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Abstract. Let G1 be a random graph with density p below the threshold for being H-Ramsey, and fix

a colouring ϕ of G1 with no monochromatic H. Once this is fixed, reveal G2, an independent random

graph on the same vertex set with density q. Is there a colouring ϕ of E(G1) such that we can colour

E(G2) \ E(G1) so that the resulting colouring of E(G1) ∪ E(G2) has no monochromatic H?

This two-round Ramsey game was introduced in 2003 by Friedgut, Kohayakawa, Rödl, Ruciński and

Tetali, motivated by the work of Friedgut, Rödl, Ruciński and Tetali on the sharpness of the threshold

for being K3-Ramsey and a natural online Ramsey game for the random graph process. The two-round

game has been studied when p is within a constant factor of the H-Ramsey threshold and H is a triangle

by Friedgut et al. and for more general H by Conlon, Das, Lee and Mészáros.

The intermediate regime, when p is below the Ramsey threshold by a ω(1) factor but above the

threshold for the online game is largely unexplored. The two-round game was first studied in this regime

in recent work of Alon, Morris and Samotij for triangles. Rather surprisingly, they discovered that how

large q as a function of p and n can be before a monochromatic triangle is forced in the colouring of

G1 ∪G2 decreases by a polynomial factor when p crosses a critical threshold.

In this paper we build on their work and provide evidence of such a threshold phenomenon for all

cycles. We determine how large q can be before a monochromatic Cℓ is forced as a function of p and n,

when p is below a critical threshold whose value generalises that for triangles in the work of Alon et al.;

and provide non-trivial bounds on q when p is above this threshold.
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1. Introduction

Given graphsG andH we say thatG isH-Ramsey if any red-blue colouring ofG has a monochromatic

copy of H. Ramsey’s theorem [36] says that for any graph H, if n is sufficiently large, any red-blue

colouring of Kn contains a monochromatic copy of H. Determining the rate of growth of n as a function

of r so that Kn is Kr-Ramsey is arguably one of the most important open problems in combinatorics.

In a recent major breakthrough Campos, Griffiths, Morris and Sahasrabudhe [6] obtained the first

exponential improvement to the well-known upper bound 4r due to Erdős and Szekeres [12], showing

that the diagonal Ramsey number is at most (4− 2−7)r. Gupta, Ndiaye, Norin and Wei [19] optimised

the technique of [6] to obtain the upper bound 3.8r. Balister, Bollobás, Campos, Griffiths, Hurley,

Morris, Sahasrabudhe and Tiba [2] improved by an exponential factor the upper bounds on multicolour

Ramsey numbers. Three further recent major breakthroughs in Ramsey theory due to Mattheus and

Verstraete [33], Campos, Jenssen, Michelen and Sahasrabudhe [7] and Ma, Shen and Xie [29] improved

long-standing lower bounds for different Ramsey numbers.

A prominent research direction of probabilistic combinatorics in the last few decades explores variants

of the Ramsey problem when the host graph is the binomial random graph G(n, p). The original

motivation for studying Ramsey properties of G(n, p) was for finding sparse H-Ramsey graphs. This

line of work started in the 1980’s with the work of Frankl and Rödl [13] and  Luczak, Ruciński and

Voigt [28] who proved that there are K4-free graphs that are K3-Ramsey by considering G(n, p) at the

appropriate edge density. The property of being H-Ramsey is increasing and hence, by a well-known

result of Bollobás and Thomason [4], has a threshold. This threshold was determined (up to a constant

factor) in a sequence of breakthroughs [37–39] by Rödl and Ruciński for a wide class of graphs H,

culminating in the next theorem.

Theorem 1.1 (Rödl–Ruciński [39]). Let H be a graph which is not a forest.1 Then there exist constants

c, C such that2

P[G(n, p) is H-Ramsey ] =

{
o (1) , p ≤ cn−1/m2(H)

1 − o (1) , p ≥ Cn−1/m2(H)

where

m2(H) = max
H′⊆H: e(H′)≥2

eH′ − 1

vH′ − 2
.

It is worth pausing for a moment to motivate the appearance of the density function m2(H) in the

above theorem. Clearly, we can avoid monochromatic copies of H if there are no monochromatic copies

of some subgraph H ′ ⊆ H with e(H ′) ≥ 2. Intuitively, it is easier to avoid monochromatic copies of H ′

when, on average, there are few copies of H ′ per edge. That is, when for some small constant c > 0 we

have nvH′peH′ ≤ cpn2. Solving for p and minimising over H ′ ⊆ H gives p ≤ cn−1/m2(H).

Random Ramsey theory studies variants of this question in the binomial random graph, in other

random graph models [10,11] and more general random discrete structures such as groups [14,40]. One

prominent example is the asymmetric version of Theorem 1.1 in full generality, which is known as the

Kohayakawa–Kreuter conjecture [23]. This was until recently a major open problem, and was resolved

in a breakthrough by Christoph, Martinsson, Steiner and Wigderson [8] who proved a determinis-

tic statement that the combined work of Bowtell, Hancock and Hyde [5], Kuperwasser, Samotij and

Wigderson [26] and Mousset, Nenadov and Samotij [34] reduced the Kohayakawa-Kreuter conjecture

1The result of Rödl and Ruciński is in fact more general: it applies for more than two colours and determines the

threshold for forests as well, but we omit these for brevity.
2For two functions f(n), g(n) we write f = o(g) if f(n)/g(n) → 0 as n → ∞. The notation f = ω(g) means g = o(f).



TWO-ROUND RAMSEY GAMES FOR CYCLES ON RANDOM GRAPHS 3

to. These developments followed a large number of prior works that resolved the Kohayakawa-Kreuter

conjecture for several special cases [5, 18,20,21,23,24,26,27,30,34].

The topic of the present paper is a two-round variant of the theorem of Rödl and Ruciński, which

was introduced by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali [15]. Let G1 ∼ G(n, p) with

p ≤ cn−1/m2(H) so that, with high probability3, G1 has a red-blue colouring avoiding monochromatic

copies of H by Theorem 1.1. Fix such a colouring ϕ of E(G1). Once this colouring is fixed, a second

independent random graph G2 ∼ G(n, q) on the same vertex set is revealed. Is there a colouring ψ of

E(G2) \E(G1) so that, with high probability, G1 ∪G2 has no monochromatic copy of H under ϕ and

ψ? We say that the combined colouring extends ϕ. The crux is that we must first colour G1, without

any knowledge of G2 whatsoever besides its distribution, and yet ensure that the colouring of G1 can

be extended with high probability to G1 ∪G2.

In [15] this game was studied for the triangle when p is within a constant factor of the threshold in

the Rödl–Ruciński theorem. The motivation for this problem comes from the role it played in two well-

studied questions of random Ramsey theory. Firstly, it arose in the work of Friedgut, Rödl, Ruciński and

Tetali [17] that determined the sharpness of the threshold in the Rödl–Ruciński theorem for triangles

i.e. showing that the thresholds for the 0- and 1-statements in Theorem 1.1 are within a factor of 1

of each other, as opposed to a large constant factor apart as in Theorem 1.1 (this was extended to a

wide class of graphs in a recent breakthrough [16]). Secondly, in determining the maximum duration

of the following online game introduced in [15]. Suppose a player colours the random graph process

online i.e. as soon as each edge of the random graph process is revealed, they must colour it irrevocably

either red or blue. The game finishes when the player is forced to create a monochromatic H. The

player’s objective is to make the game last for as long as possible, and we want to determine what is

the maximum number of edges before the game finishes. For triangles Friedgut et al. [15] and for a

wide class of graphs H Marciniszyn, Spöhel and Steger [32] determined a function m∗(H) so that with

high probability, the games lasts O(m∗(H)) rounds (and they also described a simple strategy that

that succeeds with probability bounded away from 0 for Θ(m∗(H)) rounds, and with high probability

for o (m∗(H)) rounds). To prove this, the authors [15, 32] considered the two-round game where both

random graphs have m∗(H) edges. As one might expect, this online threshold is well below the offline

threshold in the Rödl-Ruciński Theorem i.e. m∗(H) = o(n2−1/m2(H)). Despite much work on this

problem [3,31,32,35] the threshold is not known for all graphs H and every number of colours.

Returning to the two-round game, following [1], we say that q̂H = q̂H (p, n) is a Ramsey completion

threshold for H if

• when q = o(q̂H), with high probability there exists a 2-colouring of G1 that extends to a

colouring of G1 ∪G2 without any monochromatic copy of H (the 0-statement);

• when q = ω(q̂H), with high probability no 2-colouring of G1 extends to a colouring of G1 ∪G2

without any monochromatic copy of H (the 1-statement).

We will refer to these as the 0-statement and the 1-statement respectively.

The two-round Ramsey game was first studied in its own right for graphs other than triangles by

Conlon, Das, Lee and Mészáros [9] when p ≥ εn−1/m2(H) and for any fixed ε < c, where c is as

in Theorem 1.1. They proved that q̂ = n−2 is a Ramsey completion threshold for a large class of graphs

H. In other words, when q = ω(n−2), with high probability no colouring of G1 extends to a colouring

of G1 ∪G2 avoiding monochromatic copies of H. When q = o
(
n−2

)
, with high probability G2 has no

edges at all, and so trivially any two-colouring of G1 which avoids monochromatic copies of H will do

(and such a colouring exists with high probability by Theorem 1.1).

3We say that a sequence of events (An)n∈N holds with high probability if P[An ] → 1 as n → ∞.
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What if p = o
(
n−1/m2(H)

)
? Observe that if p = o(m∗(H)/n2), then we can colour the edges of

G1 ∪G2 online. The regime where p is between these two extremes was first studied recently by Alon,

Morris and Samotij [1] for the triangle. Rather surprisingly, they discovered that there are two distinct

thresholds, depending on whether p is closer to the online threshold or the offline threshold.

Theorem 1.2 (Alon, Morris, Samotij [1]). Suppose p = o(n−1/2) and p = ω(n−2/3). Then

q̂K3 =

{
p−7/2n−3, p = o(n−3/5)

p−6n−8, p = ω(n−3/5)

In the present paper we prove two 0-statements for every cycle4 Cℓ of length ℓ ≥ 4, Theorem 1.3, thus

lower-bounding the Ramsey completion thresholds, and providing evidence that there are two distinct

regimes for all cycles. The values of these thresholds, as well as the point where they change, are a

direct generalisation of the relevant parts of Theorem 1.2. We also prove a 1-statement, Theorem 1.4,

thus upper-bounding the Ramsey completion thresholds. This upper bound coincides with the lower

bound on the threshold in the lower range. For the theorem below, note that m2(Cℓ) = −1 + 1/(ℓ− 1);

and that the online Ramsey game for Cℓ lasts with high probability at most n1+1/ℓ rounds, so G(n, p)

with p = ω
(
n−1+1/ℓ

)
cannot be coloured online to avoid monochromatic copies of Cℓ. Before explaining

the values of the thresholds and the point at which they change, let us state the main theorems of this

paper, Theorem 1.3 and Theorem 1.4

Theorem 1.3. Let ℓ ≥ 4 and suppose p = o(n−1+1/(ℓ−1)) and p = ω(n−1+1/ℓ). Then there exists a

c > 0 such that the following holds.

q̂Cℓ
≥

n−ℓ p−ℓ−1/(ℓ−1), if p ≤ cn
− ℓ−2

ℓ−1−1/ℓ

n−ℓ(ℓ−1) p−ℓ2+1, if p ≥ cn
− ℓ−2

ℓ−1−1/ℓ

Theorem 1.4. Let ℓ ≥ 4 and suppose p = o(n−1+1/(ℓ−1)) and p = ω(n−1+1/ℓ). Then

q̂Cℓ
≤ n−ℓ p−ℓ−1/(ℓ−1).

We will refer to Theorem 1.3 as the 0-statements and Theorem 1.3 as the 1-statements. Setting

ℓ = 3 in Theorem 1.3, we see the bounds coincide with the values of the thresholds in the Alon–Morris–

Samotij theorem. We remark that it is not too difficult to check that the proof of Alon–Morris–Samotij

in fact shows that q̂K3 = p−7/2n−3 for p ≤ cn−3/5, for a sufficiently small constant c > 0, even though

they do not state this. For the remainder of the paper we set

m̂(Cℓ) =
ℓ− 1 − 1/ℓ

ℓ− 2

so that the completion threshold changes when p = n−1/m̂(Cℓ); and we let

q̂ up = n−ℓ(ℓ−1) p−ℓ2+1, q̂ lo = n−ℓp−ℓ−1/(ℓ−1)

denote the lower bounds to the completion thresholds in the upper and lower range respectively. It is

straightforward to check q̂ up = o (q̂ lo) for p = ω
(
n−1+1/ℓ

)
; and that q̂ up

(
n−1/m2(Cℓ), n

)
, q̂ lo

(
n−1/m2(Cℓ), n

)
differ by a polynomial factor. This means that the upper and lower bounds for q̂Cℓ

in the upper range

are far apart, and we conjecture that the correct one is q̂ up, which would generalise Theorem 1.2. We

discuss this more in the last section of the paper. The values of q̂ up and q̂ lo are determined by the

appearance of many copies of a different coloured subgraph in any colouring of G1; these are illustrated

in Figures 1 and 2 and explained below.

The coloured graph for the threshold in the upper range is illustrated in Figure 1.

4We write Pℓ and Cℓ for the path and cycle of length ℓ i.e. with ℓ edges.
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It consists of one red and one blue Pℓ−1 that have the same ends and share no other vertex. Clearly,

once this colouring is fixed, if G2 contains the ‘diagonal’ edge connecting the ends of the two monochro-

matic Pℓ−1’s a monochromatic Cℓ is forced. The number of such coloured copies of a C2ℓ−2 turns out

to be up to a constant the same as the number of copies of the uncoloured graph in Figure 1. That

is because, as we will see in the next section, we can think of blue as the ‘default’ colour, and red as

a coloured that is introduced only to avoid blue Cℓ’s. Of course these Cℓ’s that are attached on one

Pℓ−1 could intersect in various ways, but it turns out that when they intersect as little as possible their

number is maximised cf. Lemma 2.7. The coloured graph for the threshold in the lower range is similar,

Figure 1. The lower bound for the completion

threshold in the upper range comes from the num-

ber of copies in any colouring of G1 of a C2ℓ−2

consisting of a red and a blue Pℓ−1. We will show

that for ‘balanced’ colourings this is the same as

the number of uncoloured copies of this along with

a Cℓ attached on every red edge, illustrated here

for ℓ = 4. One should think of blue as the ‘default’

colour, and the top edges are forced to be red to

avoid monochromatic Cℓ’s. Note that if G2 con-

tains the dashed edge then the colouring cannot be

extended to G1 ∪G2.

Figure 2. The completion threshold for the lower

range comes from the number of copies of a blue

path of length ℓ(ℓ − 1) whose ends are connected

by a red edge in any colouring of G1. We will

show that in certain colourings this is the same as

the number of uncoloured copies of this along with

a Cℓ on the edge that is red, illustrated here for

ℓ = 4. Note that if G2 contains all the dashed

edges (which connect ends of subpaths of length

ℓ − 1) then the colouring cannot be extended to

G1 ∪G2.

but here G2 needs to hit ℓ− 1 missing edges for a monochromatic Cℓ to be forced. It is illustrated in

Figure 2. It consists of a blue P(ℓ−1)2 whose ends form a red edge. The number of these is the same as

the uncoloured graph in Figure 2, with a Cℓ on the red edge, for the same reason as above. This graph

has ℓ− 1 different potential edges which are ends of blue Pℓ−1’s and whose addition would create a Cℓ;

each of these edges, if hit by G2, must be coloured red to avoid a blue Cℓ. If all are hit by G2, a red

Cℓ is forced, using the red edge from G1. The number of copies of this (uncoloured) graph in G1 is,

with high probability, nℓ(ℓ−1)pℓ(ℓ−1)+1 (up to a small error term). Hence the expected number of copies

with all ℓ − 1 dangerous potential edges present in G2 is nℓ(ℓ−1)pℓ(ℓ−1)+1qℓ−1. Setting this equal to 1

and solving for q gives the threshold in the lower range.

Finally let us give a non-rigorous heuristic similar to the one behind the Rödl–Ruciński theorem

which can shed a light on the value of p where the thresholds change, n
− ℓ−2

ℓ−1−1/ℓ . There are two

constraints that we want to satisfy in order to avoid creating a monochromatic Cℓ: G1 must have no
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monochromatic Cℓ and not too many subgraphs with dangerous potential edges. Setting the expected

number of Cℓ’s and the (uncoloured) subgraphs that determine the threshold in the upper range to be

equal and solving for p yields p = n
− ℓ−2

ℓ−1−1/ℓ .

Organisation. The remainder of this paper is organised as follows. In Section 2 we introduce the key

definitions needed for the 0-statement and prove Theorem 1.3, giving full details for the upper range.

The proof of the 0-statement in the lower range occupies most of the paper and is the content of sections

3 to 6. Section 3 states some simple and some more technical preliminary lemmas. Section 4 proves

the 0-statement in the lower range subject to a probabilistic and a deterministic lemma, which are the

first two technical cores of the paper. The former is proved in Section 5 and the latter in Section 6.

In Section 7 we prove Theorem 1.4, the 1-statement, subject to two lemmas. The first, dealing with

balanced colourings i.e. those where both colours are used on a constant proportion of edges, is proved

in Section 8. The second, dealing with unbalanced colourings, is proved in Section 9. In the last section

we make some concluding remarks.

Notation. We use standard asymptotic and graph theoretic notation throughout pointing out a few

differences from common notation here. For functions f, g we will write f ≪ g and f ≫ g to mean

f = o(g) and f = ω(g) respectively. Given two graphs G and H we write G ∪ H for the graph with

vertices V (G) ∪ V (H) and edges E(G) ∪ E(H). We write G \ H for the graph with vertex set V (G)

and edges E(G) \ E(H). We write Pℓ and Cℓ for the path and cycle of length ℓ i.e. with ℓ edges. Let

X1, X2 be two copies of Cℓ where E(X1) ∩ E(X2) consists of exactly one edge e, and V (X1) ∩ V (X2)

consists of the two vertices of e. We denote the graph X1 ∪X2 by 2Cℓ.

2. Proof of Theorem 1.3

x y

Figure 3. Dangerous C2ℓ−2 with ℓ = 5 and dangerous potential edge xy
.

We call a red-blue colouring of a graph G good if

(1) it has no monochromatic Cℓ;

(2) every red edge lies in a copy of Cℓ.

We call a coloured copy of C2ℓ−2 dangerous if it consists of a red Pℓ−1 and a blue Pℓ−1. We call the

potential edge between the ends of the red and blue path a dangerous potential edge, cf. Figure 3.

Clearly, if our colouring of G1 were to contain a dangerous C2ℓ−2, and if G2 were to hit the potential

dangerous edge, then we would be forced to have a monochromatic Cℓ in G1 ∪G2.

To prove Theorem 1.3, we will find a good colouring of G1 with so few dangerous C2ℓ−2’s so that, with

high probability, G2 hits no dangerous potential edge. For this we will need to understand the graphs

that may give rise to a dangerous C2ℓ−2’s in a good colouring, thus motivating the next definition. In

particular, as Proposition 2.3 shows, in a good colouring every dangerous C2ℓ−2 is a subgraph of one

of the graphs in Definition 2.1.
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Figure 4. The graphs GC4
, GC5

and GC6
, cf. Definition 2.1.

Definition 2.1 (GCℓ
, G+

Cℓ
, GCℓ

, G+
Cℓ

, attached Cℓ’s). We define two collections of graphs GCℓ
,G+

Cℓ

obtained by the following procedure. Let H be a copy of 2Cℓ, let xy be the edge shared by the Cℓ’s in H

and let F0, F−1 be the two edge-disjoint paths of length ℓ− 1 with ends x, y.

For every edge e ∈ E(F0), let Fe be a copy of Cℓ such that e ∈ E(Fe)∩E(F0) and xy /∈ E(Fe). We say

Fe is attached to e, and Fe is an attached copy of Cℓ or an attached Cℓ. Define G+ := H∪
⋃

e∈E(F0)
Fe

and G := G+ \ {xy}. We call F0 the central Pℓ and F−1 the attached Pℓ of G and G+, and F0 ∪ {xy}
and F−1 ∪ {xy} the central and the attached Cℓ of G+ respectively.

We define GCℓ
(resp. G+

Cℓ
) to be the collection of graphs that can be obtained as a graph G (resp. G+)

by the above procedure, and which are minimal with respect to the property that for every e ∈ E(F0)

there is a Cℓ attached to e.

We denote by G+
Cℓ

∈ G+
Cℓ

the unique graph consisting of ℓ− 1 attached copies of Cℓ which satisfy the

following:

• they share no edge among themselves;

• they share no vertex among themselves which is not in V (F0);

• the intersection of each attached Cℓ with F0 is exactly one edge;

• none has a vertex in V (F−1) \ {x, y}.
We set GCℓ

:= G+
Cℓ

\ {xy}.
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Figure 5. Some of the graphs in GC4 , cf. Definition 2.1.

Remark 2.2. With ℓ ≥ 4, any G ∈ G+
Cℓ

has at least 3 distinct copies of Cℓ apart from the central copy,

and any G ∈ GCℓ
has at least 2 attached Cℓ’s

The motivation behind Definition 2.1 is that F0, the central Pℓ, plays the role of the red Pℓ−1 in a

dangerous C2ℓ−2 and F−1, the attached Pℓ−1, plays the role of the blue Pℓ−1. This is the essence of the

next proposition and its proof.

Proposition 2.3. In any colouring where every red edge lies in a Cℓ, every dangerous C2ℓ−2 is a

subgraph of some G ∈ GCℓ
.

Proof. Let H be a dangerous C2ℓ−2 and let P0 and P−1 be the red and blue paths of length ℓ respectively.

For every e ∈ E(P0), there exists a copy Fe of Cℓ. Let F = {Fe : e ∈ E(P0)} be a collection of such

copies such that for any F ′ ⊊ F , there exists some e ∈ E(P0) which does not lie in any Cℓ in F ′. Then

the graph with vertices V (H)∪
⋃

F∈F V (F ) and edges E(H)∪
⋃

F∈F E(F ) is in GCℓ
, with F being the

collection of attached Cℓ’s and P0, P1 being the central and attached Pℓ respectively. □

Most of the technical content for the 0-statement is in the next lemma, which shows that in the lower

range, with high probability we can colour G1 so that it has few dangerous copies of C2ℓ−2.
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Lemma 2.4. There exists c > 0 such that for p ≤ cn−1/m̂(Cℓ) and G1 ∼ G(n, p) the following holds.

With high probability, G1 has a good red-blue colouring with at most q̂ −1
lo dangerous copies of C2ℓ−2.

The proof of Lemma 2.4 is split into a ‘probabilistic lemma’, Lemma 4.3 which is proved in Section 5;

and a deterministic lemma, Lemma 4.4, which is proved in Section 6. In Section 4 we put these together

to prove Lemma 2.4.

The next lemma is the corresponding statement in the upper range, which we prove at the end of

this section.

Lemma 2.5. Suppose p ≥ n−1/m̂(Cℓ) and let G1 ∼ G(n, p). Then with high probability, G1 has a good

red-blue colouring with at most q̂ −1
up dangerous copies of C2ℓ−2.

To prove Lemma 2.5, as well as Lemma 2.7 below, we will need the following result which says that

there are many more copies of GCℓ
in G1 than of any other graph in GCℓ

.

Lemma 2.6. For a graph H let XH denote the number of copies of H in G1. Then for any G ∈ GCℓ
\GCℓ

we have

E[XG] ≪ E
[
XGCℓ

]
.

To prove Lemma 2.6 we need some technical lemmas about how the attached Cℓ’s interact; we postpone

its proof until the end of Section 3.2.

The next lemma, which is crucial for extending a colouring of G1 to G1∪G2, says that any G ∈ G+
Cℓ

has at most one edge in G2. In other words, we only need to worry about the dangerous potential edge

that connects the ends of the central and attached copy of Pℓ in G.

Lemma 2.7. With high probability over G1 ∼ G(n, p),G2 ∼ G(n, q) with n−1+1/ℓ ≪ p≪ n−1+1/(ℓ−1)

and q ≪ q̂ lo the following holds. For every G ∈ G+
Cℓ
, every copy of G in G1 ∪G2 has at most one edge

in G2.

Proof of Lemma 2.7. For a graph G ∈ GCℓ
let XG denote the expected number of copies of G in G1

and let YG denote the number of copies of G+ in G1 ∪ G2 with at least two edges in G2. Since

q ≪ p, for any G ∈ GCℓ
, E[YG] = Θ

(
q2 p−1 E[XG]

)
. Hence Lemma 2.6 implies that for any G ∈ GCℓ

,

E[YG] = o
(
E
[
YGCℓ

])
. Therefore it suffices to show that E

[
YGCℓ

]
≪ 1, and the required conclusion

follows from Markov’s inequality and a union bound over the O(1) choices for G ∈ GCℓ
.

Recalling the definition of G+
Cℓ

it is easy to see that v(G+
Cℓ

) = ℓ(ℓ− 1) and e(G+
Cℓ

) = ℓ2. Since q ≪ p,

the expected number of G+
Cℓ

with at least two edges in G2 is at most O
(
nℓ(ℓ−1) pℓ

2−2q2
)

which is o(1)

for q ≪ q̂ lo. □

The next lemma shows how, given a colouring of the first random graph such as the ones in Lem-

mas 2.4 and 2.5 one can extend it to the second random graph.

Lemma 2.8. Suppose n−1+1/ℓ ≪ p ≪ n−1+1/ℓ and q ≪ Q−1, for some Q with Q ≥ q̂ −1
lo . Let

G1 ∼ G(n, p),G2 ∼ G(n, q) be independent random graphs on the same vertex set. Suppose that, with

high probability, G1 has a good colouring ϕ with at most Q dangerous C2ℓ−2’s. Then with high probablity,

there exists a colouring ϕ′ of G1 ∪G2 that agrees with ϕ on E(G1) that has no monochromatic Cℓ.

Proof of Lemma 2.8. The next claim contains the properties we need the ‘realisation’ of the first random

graph to satisfy.

Claim 2.9. With high probability, the random graph G1 is a graph G1 satisfying the following.

• There is a good colouring ϕ of G1 with at most Q dangerous copies of C2ℓ−2.
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• With high probability over G2 ∼ G(n, q), for every G ∈ G+
Cℓ
, every copy of G in G1 ∪G2 has at

most one edge in G2.

• With high probability over G2 ∼ G(n, q), G2 contains no edges which are dangerous potential

edges with respect to ϕ.

Proof of Claim 2.9. The first bullet-point follows clearly from the assumptions of the lemma. The

second bullet-point follows from Fubini’s theorem and Lemma 2.7.

The last bullet-point follows from Markov’s inequality. Indeed, the number of dangerous potential

edges is at most the number of dangerous copies of C2ℓ−2. Since each edge is present with probability

q, the expected number of such edges in G2 is at most Q · q ≪ 1. □

Fix a colouring ϕ of G1 satisfying the first bullet point of Claim 2.9. By Claim 2.9, with high

probability, G2 is a graph G2 such that for every G ∈ G+
Cℓ

, every copy of G in G1 ∪G2 has at most one

edge in G2; and G2 contains no edges which are dangerous potential edges with respect to ϕ.

We extend the colouring ϕ to a colouring ϕ′ of G1 ∪ G2 as follows. We go through E(G2) \ E(G1)

in an arbitrary order, and for each e ∈ E(G2) \ E(G1) we colour e blue, unless this creates a blue Cℓ

along with E(G1) and the already coloured edges of E(G2), in which case we colour e red.

Suppose for the sake of contradiction that this colouring fails to be Cℓ-free. Then there is an edge

xy ∈ E(G2) \E(G1) such that there is a dangerous C2ℓ−2, K, contained in the union of E(G1) and the

edges of G2 coloured thus far, with x, y being the ends of the red and blue Pℓ of K. Since the colouring

of E(G2) \ E(G1) maintains the property that every red edge lies in a copy of Cℓ, by Proposition 2.3

K is a subgraph of a G ∈ GCℓ
. Hence K ∪ {xy} lies in a copy of some G+ ∈ G+

Cℓ
. By the second bullet

point of Claim 2.9, at most one edge of G+ lies in G2, so xy is the only edge of G+ that lies in G2 and

K is a dangerous C2ℓ−2 in ϕ and a subgraph of G1. Therefore the pair x, y is a dangerous potential

edge with respect to ϕ. Hence the third bullet point of Claim 2.9 implies that xy /∈ E(G2), which is a

contradiction. □

Proof of Theorem 1.3. Theorem 1.3 is a direct consequence of Lemma 2.8 and Lemma 2.5, for the upper

range; and Lemma 2.8 and Lemma 2.4 in the lower range. □

We end this section by completing the proof of the 0-statement for the upper range. For this we will

need the following well-known bound on the number of copies of small graphs in G(n, p).

Proposition 2.10 (Chapter 3 [22]). Let H be a strictly balanced graph on a bounded number of vertices

and suppose p ≫ n−1/m(H). Then with high probability, the number of copies of H in G(n, p) is

(1 + o(1))nvHpeH .

Proof of Lemma 2.5. By Theorem 1.1, with high probability G1 has a 2-colouring with no monochro-

matic Cℓ. Fix such a colouring. Then, change the colour of every red edge that is not on a Cℓ to blue.

The resulting colouring is good, so by Proposition 2.3 every dangerous C2ℓ−2 lies in a copy of some

G ∈ GCℓ
. Hence the total number of all dangerous C2ℓ−2 is at most the sum over G ∈ GCℓ

of the number

of copies of G ∈ GCℓ
in G1. By Lemma 2.6 and Proposition 2.10, the number each such copy is, with

high probability, at most O
(
nℓ(ℓ−1) pℓ

2−1
)

. This is O
(
q̂ −1
up

)
, as required. □

3. Preliminary lemmas

3.1. Graph densities and graph counts. At several places we will use the following observation.

Observation 3.1. Let a, b, x, y, C > 0 with a ≥ x and b ≥ y.

• Suppose a > x and b > y. Then a−x
b−y ≥ a

b ⇔ a
b ≥ x

y , with equality if and only if a/b = x/y.

• If a
b ,

x
y ≥ C, then a+x

b+y ≥ C, with equality if and only if a
b = x

y = C
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• If x > y then x+C
y+C < x

y and x−C
y−C > x

y .

The density of a non-empty graph G is d(G) = eG/vG and we define m(G) = maxG′⊆G d(G′), where

G′ has at least one vertex. The 1-density for G with vG ≥ 2 is d1(G) = eG
vG−1 and the 2-density if

vG ≥ 3 is d2(G) = eG−1
vG−2 . The maximum 1- and 2-densities are defined to be

m1(G) = max
H⊆G

d1(H) and m2(G) = max
H⊆G

d2(H).

For k ∈ {1, 2}, we say G is strictly k-balanced if mk(G) = dk(G) and dk(H) < dk(G) for every proper

subgraph H of G.

Observation 3.2. Every cycle is strictly 1- and 2-balanced.

Observation 3.3. We have m̂(Cℓ) < m2(Cℓ).

Proposition 3.4. For every strictly 2-balanced graph H and every subgraph F ⊆ H with 2 ≤ vF ≤
vH − 1,

eH − eF
vH − vF

≥ m2(H),

with equality if and only if F is a single edge.

Proof. If vF ≥ 3 then
eH − eF
vH − vF

=
eH − 1 − (eF − 1)

(vH − 2) − (vF − 2)
>
eH − 1

vH − 2
,

using d2(F ) < d2(H) and Observation 3.1. For vF = 2 it is easy to check the inequality holds, with

equality if and only if F is an edge. □

3.2. Attached Cℓ’s. Throughout the paper, when considering a graph G ∈ GCℓ
∪G+

Cℓ
, F0 and F−1 will

always denote the central and the attached Pℓ of G. It will be useful to consider different orderings on

the attached Cℓ’s for the proof of the 0-statement in the lower range.

Definition 3.5 (Order of attached Cℓ’s, vertices and edges.). Let G ∈ GCℓ
, let F0 be the central Pℓ of

G with ends x, y.

We define the following linear order on V (F0): for u ̸= v ∈ V (F0), u < v if we encounter u before v

as we traverse F0 from x to y.

We define the following linear order on E(F0): for e ̸= e′ ∈ E(F0), e < e′ if we encounter e before

e′ as we traverse F0 from x to y.

Finally, we define the following linear order on the attached Cℓ’s: for two attached Cℓ’s F ̸= F ′,

we have F < F ′ if E(F ) ∩ E(F0) is less than E(F ′) ∩ E(F0) in the lexicographic order of subsets of

E(F0) induced by the linear order of E(F0). If G has k attached Cℓ’s, F1, . . . , Fk will always denote an

enumeration of the attached Cℓ’s in this order i.e. F1 < · · · < Fk, with x ∈ V (F1) and y ∈ V (Fk).

Observation 3.6. Let G ∈ GCℓ
with k attached Cℓ’s.

• For every i ∈ [2, k], Fi and
⋃

j<i Fj share the first vertex in V (F0) ∩ V (Fi);

• For every i ∈ [2, k − 1], Fi shares the first and last vertex in V (Fi) ∩ V (F0) with
⋃

j ̸=i Fj.

Proposition 3.7. Let G ∈ GCℓ
with k attached Cℓ’s. For i ≥ 1 set F ′

i = Fi ∩
⋃

0≤j<i Fi and F
′
−1 =

F−1 ∩
⋃k

i=1 Fi. For i ∈ [k] ∪ {−1} let vi = v(F ′
i ) and ei = e(F ′

i ). Then the following hold.

(1)
∑k

i=1 vi ≥ k + ℓ− 1 and ei ≤ vi − 1.

(2) v−1 ≥ 2 and either F−1 has at least two connected components, or F ′
−1 = F−1 and

∑k
i=1 vi ≥

k + ℓ.
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(3) vG and eG satisfy vG = (k + 2)ℓ−
∑k

i=1 vi − v−1 and

eG = (k + 2)ℓ− 2 −
k∑

i=1

ei − e−1 ≥ (k + 2)ℓ− 2 + k −
k∑

i=1

vi − e−1

Proof. Let i ≥ 1. Since every edge of F0 lies in a copy of Cℓ and G is minimal with respect to this

property, F ′
i is a proper subgraph of Fi, and thus it is a linear forest, so e(F ′

i ) ≤ v(F ′
i ) − 1. Let

vi = v(F ′
i ) and for i ≥ 1 set

v1i =

∣∣∣∣∣∣V (
F ′
i ∩ F0

)
\

⋃
0<j<i

V (Fj)

∣∣∣∣∣∣ ,
v2i =

∣∣∣∣∣∣
V (F ′

i ) ∩
⋃

0<j<i

V (Fj)

 \ V (F0)

∣∣∣∣∣∣ ,
v3i =

∣∣∣∣∣∣V (F ′
i ) ∩

 ⋃
0<j<i

V (Fj)

 ∩ V (F0)

∣∣∣∣∣∣ ,
so that vi = v1i +v2i +v3i . Because

⋃
i≥1 F

′
i =

⋃
i≥1 Fi covers V (F0), we have

∑k
i=1 v

1
i = ℓ. Observation 3.6

implies that for every i ≥ 2, v3i ≥ 1. Hence
∑k

i=1 v
3
i ≥ k − 1. We can thus conclude

∑k
i=1 vi ≥∑k

i=1(v
1
i + v3i ) ≥ k + ℓ− 1.

For the second part of the proposition, note that the two vertices in V (F−1) ∩ V (F0) are the ends

of F−1. Hence they lie in distinct connected components of F ′
−1 unless F ′

−1 = F−1. If F ′
−1 = F−1,

we have F−1 ⊆
⋃

j≥1 Fj . Cleary F−1 cannot be a subgraph of a single Cℓ, since the ends of F−1 are

non-adjacent. Hence there are edges uv, vw ∈ E(F−1) and 1 ≤ j < i ≤ k with uv ∈ E(Fi), vw ∈ E(Fj).

Hence v ∈ V (Fi) ∩ V (Fj), and observe that v /∈ V (F0), since it is an internal vertex of F−1. Hence

v2i ≥ 1, which gives
∑k

i=1 vi ≥ k + ℓ.

For the third part of the proposition we used the bound ei ≤ vi − 1 for each i ∈ [k]. □

The last item of this section is the proof of Lemma 2.6.

Proof of Lemma 2.6. We will show that for any G ∈ GCℓ
\ {GCℓ

} and p≫ n−1+1/ℓ,

nv(G) pe(G) ≪ nv(GCℓ
) pe(GCℓ

). (1)

Observe that for all G ∈ GCℓ
\ {GCℓ

} with e(G) = e(GCℓ
), v(G) ≤ v(GCℓ

)− 1. Hence (1) is satisfies for

such G and for the remainder of the proof we will consider the case e(G) < e(GCℓ
). Then (1) can be

rewritten as

p≫ n

v(G)−v(GCℓ
)

e(GCℓ
)−e(G) .

Since p≫ n−1+1/ℓ, (1) follows from

e(GCℓ
) − e(G)

v(GCℓ
) − v(G)

≤ ℓ

ℓ− 1
, (2)

which we will show to hold in the remainder of the proof. Since e(GCℓ
) = ℓ2−1 and v(GCℓ

) = ℓ2−ℓ,(2)

can be rewritten as
ℓ2 − (1 + eG)

ℓ2 − ℓ− vG
≤ ℓ2

ℓ2 − ℓ
,

which, using Observation 3.1, is equivalent to

1 + eG
ℓ2 − ℓ− vG

≥ ℓ

ℓ− 1
.
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Let F0, F−1 be the central and attached copy of Cℓ respectively and let F1, . . . , Fk be the attached Cℓ’s

of G in the linear order of Definition 3.5. Let F ′
i = Fi ∩

⋃
0≤j<i Fi and F ′

−1 = F−1 ∩
⋃k

i=1 Fi. For

i ∈ [k] ∪ {−1} let vi = v(F ′
i ) and ei = e(F ′

i ). Using the expressions for eG, vG from Proposition 3.7 the

left hand side of the last inequality is at least

−1 + (k + 2)ℓ+ k −
∑k

i=1 vi − e−1

(k + 2)ℓ−
∑k

i=1 vi − v−1

= 1 +
k − 1 + v−1 − e−1

(k + 2)ℓ−
∑k

i=1 vi − v−1

.

If F−1 = F ′
−1, by Proposition 3.7 we have

∑k
i=1 vi ≥ k + ℓ and hence the above expresion is at least

1 +
k

kℓ− k
=

ℓ

ℓ− 1
,

as required. Otherwise by Proposition 3.7 F ′
−1 has at least two components, and using the bounds∑k

i=1 vi ≥ k + ℓ− 1 and v−1 ≥ 2 from Proposition 3.7, the previous expression is at least

1 +
k + 1

(k + 2)ℓ− k − ℓ+ 1 − 2
=

ℓ

ℓ− 1
,

as required. □

4. The 0-statement in the lower range

In this section we prove the key lemma for the 0-statement in the lower range, Lemma 2.4, subject

to Lemmas 4.3 and 4.4 which are the main results of Sections 4 and 5 respectively.

To find a good colouring of G1 with few dangerous C2ℓ−2’s we need to understand how copies of

Cℓ and G ∈ GCℓ
interact. Borrowing a concept common in random Ramsey theory in general, and its

incarnation in the work of Alon, Morris and Samotij [1] in particular, we will do this by studying the

following hypergraph. The definitions in this section, as well as the techniques in the remainder of the

paper, build on [1].

Definition 4.1. For an integer ℓ ≥ 4 let H be the hypergraph with vertex set E(Kn) where a subset

S ⊆ E(Kn) is an edge of H if S spans a copy of a graph in {Cℓ} ∪ GCℓ
. We call a graph C ⊆ Kn a

Cℓ-collage or a collage if H[E(C)] is connected. We denote the collection of all Cℓ-collages by Cℓ or C.

Definition 4.2. We say a Cℓ-collage C ∈ Cℓ is good if

(1) v(C) ≤ log n;

(2) for every C ′ ⊆ C with C ′ ∈ Cℓ we have e(C ′)/v(C ′) < m̂(Cℓ).

We say that C is very good if it contains no subgraph H with ℓ+1 ≤ vH ≤ ℓ3 and eH ≥ ℓ+1 satisfying

eH − ℓ− 1/(ℓ− 1)

vH − ℓ
> m̂(Cℓ) (3)

where recall

m̂(Cℓ) =
ℓ2 − ℓ− 1

ℓ(ℓ− 2)
=
ℓ− 1 − 1/ℓ

ℓ− 2
= 1 +

1 − 1/ℓ

ℓ− 2

The proof of the key lemma for the 0-statement in the lower range, Lemma 2.4, splits into a ‘prob-

abilistic lemma’, Lemma 4.3 below; and a ‘deterministic lemma’, Lemma 4.4 below. The former says

that, with high probability, every collage that G1 contains is good.

Lemma 4.3. There exists c > 0 such that the following holds. Suppose p ≤ cn−1/m̂(Cℓ) and let

G1 ∼ G(n, p). Then with high probability every C ∈ Cℓ with C ⊆ G1 is good.
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The deterministic lemma is a little more subtle. Here we show that a very good collage, i.e. one

without any ‘dense’ small subgraph (i.e. without any subgraph satisfying (3)) can be coloured so that

there is no dangerous C2ℓ−2 at all. Our final colouring may have dangerous C2ℓ−2’s in collages which are

good but not very good; we can obtain a good upper bound on the dangerous C2ℓ−2’s in such collages

by using that they have order at most log n and contain subgraphs satisfying (3).

Lemma 4.4. Every very good Cℓ-collage admits a good colouring that has no dangerous C2ℓ−2.

Proof of Lemma 2.4. The property of good but not very good collages that we need is captured in the

following claim, whose proof we defer until the end.

Claim 4.5. With high probability, there are at most O(n−ε q̂ −1
lo ) collages which are not very good, for

some constant ε > 0.

With high probability, G1 is a graph G1 satisfying the conclusions of Theorem 1.1, Proposition 2.10,

Lemma 4.3 and Claim 4.5.

By Theorem 1.1, G1 has a red-blue colouring ϕ0 that avoids monochromatic Cℓ’s. Let (Ci)i∈I∪J be

a maximal collection of edge-disjoint collages of G with (Ci)i∈J being the very good collages, and let

E0 = E(G) \
⋃

i∈I∪J Ci be the edges not on any graph in {Cℓ} ∪ GCℓ
. By Lemma 4.3, for every i ∈ I,

Ci is a good collage. For every j ∈ J , by Lemma 4.4, every Cj has a very good colouring ϕj .

Let ϕ be the following colouring:

• for every j ∈ J , ϕ agrees with ϕj on Cj ;

• ϕ colours every e ∈ E0 blue;

• for every i ∈ I, ϕ agrees with ϕ0 on Ci on all edges lying in a Cℓ, and all edges not in a Cℓ are

coloured blue.

Since each copy of Cℓ lies in a collage, ϕ avoids monochromatic Cℓ’s; and since every red edge lies in a

Cℓ, ϕ is a good colouring.

It remains to upper bound the number of dangerous C2ℓ−2’s. Because the colouring is good, by

Proposition 2.3 every dangerous C2ℓ−2 lies in some G ∈ GCℓ
, and hence in some collage. The colouring

ϕ avoid dangerous C2ℓ−2 in every Cj , j ∈ J . Therefore it suffices to show that there are o
(
q̂ −1
lo

)
copies

of each G ∈ GCℓ
in

⋃
i∈I Ci.

By Claim 4.5, |I| ≤ n−ε · q̂ −1
lo . By Lemma 4.3 for every i ∈ I, Ci has order at most log n and hence

has at most (log n)O(1) copies of graphs in GCℓ
. Hence the number of copies of graphs G ∈ GCℓ

in⋃
i∈I Ci is at most |I| · (log n)O(1) ≤ n−ε/2 · q̂ −1

lo ≪ q̂ −1
lo , as required.

Proof of Claim 4.5. Since every collage which is not very good contains a copy of a graph satisfying (3),

the number of collages which are not very good is at most the number of copies of such graphs in G1.

Let δ > 0 be the minimum of eH−ℓ−1/(ℓ−1)
vH−ℓ − m̂(Cℓ) over all H with ℓ + 1 ≤ vH ≤ ℓ3 and eH ≥ ℓ + 1

satisfying (3). Then, using vH ≥ ℓ + 1, we have eH ≥ m̂(Cℓ)(vH − ℓ) + δ + ℓ + 1/(ℓ − 1), for every

such H. By Proposition 2.10 there are at most O(nvHpeH ) copies of every such H in G1. Using

q̂ lo = n−ℓ p−ℓ−1/(ℓ−1), the lower bound for eH , and that p ≤ cn−1/m̂(Cℓ) we have

q̂ lo · nvHpeH ≤ nvH−ℓpm̂(Cℓ) (vH−ℓ)+δ ≤ n−δ/m̂(Cℓ)cm̂(Cℓ)(vH−ℓ)+δ ≤ n−ε,

for some ε > 0, using vH ≤ ℓ3. Rearranging gives nvH peH ≤ n−ε q̂ −1
lo . Since there are at most 22ℓ

6

choices for H, we deduce there are at most O(n−ε q̂ −1
lo ) copies of such H, and hence at most this many

collages which are not very good. □

This completes the proof of Lemma 2.4. □



TWO-ROUND RAMSEY GAMES FOR CYCLES ON RANDOM GRAPHS 15

5. The probabilistic lemma: all collages are good

For a graph G and a subgraph I of G with v(I) < v(G) define

d̂(G, I) =
e(G) − e(I)

v(G) − v(I)
(4)

so m̂(Cℓ) = d̂(GCℓ
, Cℓ).

To prove Lemma 4.3 we will analyse an exploration algorithm on a collage. The crux of the analysis

will be the next lemma. It essentially says that at each step of the exploration, the density of the

collage cannot increase too much.

Lemma 5.1. Let G ∈ GCℓ
and let I be a subgraph of G with v(I) < v(G) that satisfies the following:

• E(I) ̸= ∅;
• every copy of Cℓ in G is either contained in I or shares no edge with I.

Then

d̂(G, I) ≥ d̂(GCℓ
, Cℓ),

with equality if and only if G = GCℓ
and I = Cℓ.

Before proving Lemma 5.1, which is rather technical, we show how it is used to prove the probabilistic

lemma, Lemma 4.3. The proof is partly based on the proof of the probabilistic statement in [25].

Proof of Lemma 4.3. Let Cbad = {C ∈ Cℓ : v(C) > log n or e(C)/v(C) ≥ m̂(Cℓ)}, so that Cbad contains

every collage which is not good. Let ε, L and Γ be parameters to be determined later, whose value

depends only on ℓ. We will describe an exploration algorithm that given a C ∈ Cbad, it outputs a S ⊆ C

such that both conditions a) and b) below hold.

a) Either e(S) ≥ m̂(Cℓ) · v(S) + ε; or v(S) ≥ log n and e(S) ≥ m̂(Cℓ) (v(S) − ℓ).

b) For each k ≤ n, there are at most Lnk possible outputs S of the algorithm with v(S) = k.

Let S be the collection of all outputs of our exploration algorithm. Before describing the algorithm, we

show how the existence of such a collection implies the lemma. We have

P[C ⊆ G1 for some C ∈ Cbad ] ≤ P[S ⊆ G1 for some S ∈ S ] ≤
∑
S∈S

peS .

Using a), b) and choosing c sufficiently small, this is at most∑
k≤logn

(Ln)kpm̂(Cℓ)k+ε +
∑

k≥logn

(Ln)kpm̂(Cℓ)(k−ℓ) ≤ 2pε + nℓ · n−ℓ−1 ≪ 1

We now proceed to define the exploration algorithm on input C ∈ Cbad. Fix a labelling of V (Kn) and

order E(Kn) according to the lexicographic order. This induces a lexicographic order of the subgraphs

of Kn. Let C0 be the copy of Cℓ in C that is first in this order. While Ci ̸= C, since C is a collage

there exists either a copy of Cℓ or a graph in GCℓ
that intersects Ci on an edge. We call iteration i+ 1

of the algorithm regular if there is a copy G of GCℓ
such that its intersection with Ci is exactly a copy

of Cℓ, and call G a regular copy of GCℓ
. We call iteration i + 1 degenerate otherwise. The root of a

regular copy is the unique edge that lies both in the central copy Pℓ and the copy of Cℓ in Ci.

At each step of the algorithm we keep track of five first-in-first-out queues LV , LE , LR, , L
′
R, LD

that will log information about the execution of the algorithm. We will ultimately show that we can

reconstruct the output of the algorithm from these logs, and thus we can upper-bound the number of

possible outputs by the number of possible values for the logs. Throughout the exploration, LV will

be a sequence of vertices in V (C) and LE a sequence of edges in E(C), so that at the end of the i-th

iteration LV and LE are the vertex and edge sets of Ci. LR will be an increasing (but not necessarily

strictly increasing!) sequence of positive integers, each one corrsponding to an entry in LE . Entries of
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L′
R will be integers in [ℓ− 1]. Each entry of LD will be a step i of the execution of the algorithm and a

collection of edges. We first set LV to be V (C) and LE to be E(C). For each i ≥ 0, we update Ci and

the logs to obtain Ci+1 as follows.

1) Suppose there is a regular copy of GCℓ
. Let G be the regular copy whose root was added first

in LE . Let j ≤ i be the position of the root and insert j (at the end of) LR. Since j is the

smallest possible ‘birth time’ for a root, this maintains the property that LR is a increasing

sequence (LR will only record the roots of regular steps). Let x, y be the vertices that are both

in the central and the attached copy of Pℓ and suppose x < y in the lexicographic order. Let

H1, . . . ,Hℓ−1 be the ordering of the copies of Cℓ on GCℓ
as we move from x to y along the

central Pℓ. Insert into L′
R the position s ∈ [ℓ − 1] of G ∩ Ci. Insert V (G) \ V (Ci) into LV in

the following order. We go through the cycles H1, . . . ,Hs−1, Hs+1, . . . ,Hℓ−1 in order. For Hi,

if its vertices are v1, . . . , vℓ with vtvt+1 ∈ E(Hi) and v1vℓ is the edge on the central copy of Pℓ,

then we add V (Hi) in this order in LV . Finally, we add the vertices of the attached copy of Pℓ

as we traverse it from x to y. It is not too hard to see that we can reconstruct E(G) \ E(Ci)

given the ℓ-cycle G ∩Ci, its position among the other cycles in G, and the ordered sequence of

V (G) \ V (Ci) in LV . Insert E(G) \ E(Ci) into LE and set Ci+1 := Ci ∪ E(G).

2) Suppose condition 1) fails. If there is a copy of Cℓ that intersects Ci on at least one edge, let

H be such a copy chosen arbitrarilly. Insert V (H) \ V (Ci) into LV , E(H) \E(Ci) into LE , and

(i, E(H) \ E(Ci)) into LD. Set Ci+1 := Ci ∪H.

3) Suppose conditions 1) and 2) fail. Then there exists a copy of some G ∈ GCℓ
such that its

intersection with Ci is a subgraph I with (G, I) ̸= (GCℓ
, Cℓ) and moreover for every copy of Cℓ

in G, I either contains it or it is edge-disjoint from it. In particular, I satisfies the assumptions

of Lemma 5.1. Insert V (G) \ V (Ci) into LV , E(G) \E(Ci) into LE , and (i, E(G) \E(Ci)) into

LD. Set Ci+1 := Ci ∪H.

Let τ(C) be the first iteration i ≥ 1 such that one of the following holds.

• The i-th iteration is the Γ-th degenerate iteration.

• vCi ≥ log n.

• Ci = C

The exploration process stops at iteration τ(C) and we output Cτ(C). Let S = {Cτ(C) : C ∈ C} be the

possible outputs of the process.

Claim 5.2. There exist ε,Γ > 0 depending only on ℓ such that condition a) holds. Moreover, there

exists A > 0 depending only on ℓ such that e(Ci) ≤ Ai for all i.

Proof. Let S = Cτ(C) for some C ∈ Cbad.

We first show that when S ∈ Cbad, there exists ε > 0 (depending only on ℓ) so that eS ≥ m̂(Cℓ) vS +ε.

Let a = (ℓ− 1)2 − 1 and note that m̂(Cℓ) · a is an integer. Hence a · eS > a · m̂(Cℓ) vS implies

a · eS ≥ a · m̂(Cℓ) vS + 1, since both sides are integers. Then setting ε := 1/a yields eS ≥ m̂(Cℓ) vS + ε.

Suppose now S ∈ S \ Cbad is the output of the algorithm when executed on a collage C ∈ Cbad and

let Ci be the subgraph of C at the i-th iteration of the exploration algorithm, so S = Cτ(C) and S ̸= C.

Let α0 be the minimum value of d(G, I) over all pairs G ∈ GCℓ
and I ⊊ G where I contains an edge

of G, (G, I) ̸= (GCℓ
, Cℓ) and for every copy of Cℓ in G, either I contains it or it is edge disjoint from I.

By Lemma 5.1, α0 > m̂(Cℓ). Let α = min{m2(Cℓ), α0}, and note that α > m̂(Cℓ). Let η := α− m̂(Cℓ).

Let di be the number of denerate steps the algorithm makes up to iteration i. We will now show that

(eCi − ℓ) − m̂(Cℓ)(vCi − ℓ) ≥ ηdi, for all i. (5)

For i = 0 both sides of (5) are 0. Suppose that (5) holds for i. If the (i + 1)-th step is regular, then

di+1 = di, eCi+1 = (e(GCℓ
) − ℓ) + eCi and vCi+1 = (v(GCℓ

) − ℓ) + vCi , so both sides of (5) remain
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unchanged, since e(GCℓ
) − ℓ = m̂(Cℓ) · (v(GCℓ

) − ℓ). Suppose the (i + 1)-th step is degenerate, so

we are either in case 2) or in case 3). Let G be the copy of the graph in {Cℓ} ∪ GCℓ
for this step

and I = G ∩ Ci its intersection with the collage. Then the right-hand-side of (5) increases by η and

left-hand-side increases by

(e(G) − e(I)) − m̂(Cℓ)(v(G) − v(I)) ≥ (α− m̂(Cℓ))(v(G) − v(I)) ≥ η.

Here for case 2) we used that for any I ⊊ Cℓ that contains at least one edge, ℓ−e(I) ≥ m2(Cℓ)(ℓ−v(I))

by Proposition 3.4, which is at least α(ℓ− v(I)) by definition of α. We thus deduce that (5) holds for

all i ≥ 1. Hence, if the exploration continues for i ≥ log n steps, S satisfies condition a).

Set Γ := ⌈ℓ·η−1 ·m̂(Cℓ)⌉, and suppose the algorithm terminates at the Γ-th degenerate step. Then (5)

gives

eS ≥ ℓ+ η · Γ + m̂(Cℓ)(vS − ℓ) ≥ ℓ+ m̂(Cℓ) vS

and condition a) holds.

Finally, for the second part of the claim, at each iteration we add e(G) − e(I) edges to the collage,

where G ∈ GCℓ
∪ Cℓ is the graph we extend the collage by and I is its intersection with the collage.

It is not hard to see that the maximum of e(G) − e(I) over all valid choices of G and I is e(GCℓ
) − ℓ,

which is a function of ℓ. □

Claim 5.3. There exists a constant L > 0 depending only on ℓ such that condition b) holds.

Proof. Let S ∈ S with k vertices and C ∈ Cbad such that S is the output of the algorithm when ran on C.

We first claim that we can reconstruct LE given the logs LV , LR, L
′
R, LD, and thus we can reconstruct

S. We will show that given the logs LV , LR, L
′
R, LD and the entries of LE up to iteration i − 1, we

can deduce the entries of LE up to iteration i. We can tell if the i-th step is degenerate by inspecting

whether (i, Z) ∈ LD, for some collection of edges Z. If this is the case, then Z = E(Ci) \ E(Ci−1),

and we are done. Suppose then that the i-th step is regular, and that it is the j-th regular step. Then

the j-the entry of LR contains the position in LE of the root of the regular copy, and the j-th entry of

L′
R contains the position of the ℓ-cycle Ci−1 ∩G among the other ℓ-cycles in GCℓ

. Examining the next

v(GCℓ
) − ℓ entries in LV allows us then to reconstruct the edges of the regular copy of GCℓ

uniquely,

as explained in the description of the algorithm. Thus we can reconstruct LE at the end of the i-th

iteration.

It remains to show there are at most Lknk possibilites for the logs LV , LR, L
′
R, LD, for some constant

L.

There are at most nk possibilities for LV . Each step adds at least one vertex to the explored graph,

so there are at most k regular steps, and LR, L
′
R have length at most k, while LD has length at most

Γ.

Each entry of L′
R is in [ℓ−1], so there are at most ℓk possibilities for L′

R. By Claim 5.2 e(Ci) ≤ Ai ≤
Ak for all i and hence LE has length at most Ak. Hence LR is an increasing sequence of length at most

k of integers in [Ak]. Hence the number of possibilities for LR is at most
(
Ak+k−1

k

)
≤ 2(A+1)k. Finally,

for each entry of LD there are at most k ·(Ak)ℓ
3

possibilities, so LD can take at most (k · (Ak)ℓ
3

)
Γ
≤ kB

values, for some constant B depending only on ℓ (using that Γ is a function of ℓ by Claim 5.2).

Hence, the total number of possibilities for the logs LV , LR, L
′
R, LD is at most Lk · nk for some

constant L depending only on ℓ, as claimed. □

This completes the proof of Lemma 4.3. □

5.1. Bounding the density increase at each step of the exploration. In this subsection we prove

Lemma 5.1. It will be a direct consequence of the next two lemmas, Lemmas 5.4 and 5.5.
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Lemma 5.4. Let G ∈ GCℓ
and let F−1 be the attached Cℓ of G. Let I be a subgraph of G with

v(I) < v(G) and E(I) ̸= ∅ that satisfies the following.

• I contains no edge that lies in an attached Cℓ;

• E(I) ⊆ E(F−1).

Then d̂(G, I) > d̂(GCℓ
, Cℓ).

Lemma 5.5. Let G ∈ GCℓ
and let I be a subgraph of G with v(I) < v(G) that satisfies the following:

• I contains at least one copy of Cℓ in G.

• for every copy F of Cℓ in G, either E(F ) ⊆ E(I) or E(F ) ∩ E(I) = ∅.
Then

d̂(G, I) ≥ d̂(GCℓ
, Cℓ),

with equality if and only if G = GCℓ
and I = Cℓ.

Proof of Lemma 5.1. This is a direct consequence of Lemmas 5.4 and 5.5. □

Proof of Lemma 5.4. Let F0 be the central copy of Pℓ. Let F1, . . . , Fk be the copies of Cℓ in G according

to the order in Definition 3.5. For i ≥ 1, let F ′
i = Fi ∩

⋃i−1
j=0 Fi and F ′

−1 = F−1 ∩
⋃k

i=0 Fi. For each

i ∈ [k] ∪ {−1} let ei = e(F ′
i ), vi = v(F ′

i ). Since the ends of F−1 are in F0, we have v′−1 ≥ 2. By

Proposition 3.7,
∑k

i=1 vi ≥ ℓ+ k− 1 and ei ≤ vi− 1, for all i ∈ [k]. Since I contains no edge that lies in

an attached Cℓ (but may have isolated vertices in attached Cℓ’s) we have E(I) ⊆ E(F−1)\
(⋃k

i=1E(Fi)
)

and thus by Proposition 3.7 F−1 ∩
⋃

i≥1 Fi has at least two components.

Let e = e(I ∩ F−1) and v = v(I ∩ F−1), and note that 1 ≤ e ≤ v − 1 and v ≥ 2. We can write

v(G) = ℓ+
∑k

i=1(ℓ− vi) + (ℓ− v−1) and e(G) = ℓ− 1 +
∑k

i=1(ℓ− ei) + (ℓ− 1 − e−1).

First suppose that F−1 ⊆ I ∪
⋃

i≥1 Fi. Because F−1 ∩
⋃

i≥1 Fi has at least two components, I has a

vertex from each component. Therefore I contains at least two vertices in
⋃

i≥1 Fi, i.e.

v(G) − v(I) ≤ ℓ+
k∑

i=1

(ℓ− vi) − 2 = (k + 1)ℓ− 2 −
k∑

i=1

vi.

We also have

e(G) − e(I) = ℓ− 1 +

k∑
i=1

(ℓ− ei) ≥ ℓ− 1 +
k∑

i=1

(ℓ− vi + 1) = (k + 1)ℓ+ k − 1 −
k∑

i=1

vi.

Hence, using
∑k

i=1 vi ≥ k + ℓ− 1 and Observation 3.1 we obtain

e(G) − e(I)

v(G) − v(I)
≥

(k + 1)ℓ+ k − 1 −
∑k

i=1 vi

(k + 1)ℓ− 2 −
∑k

i=1 vi
≥ kℓ

kℓ− k − 1
=

ℓ

ℓ− 1 − 1/k

which is at least
ℓ

ℓ− 1 − 1/(ℓ− 1)
,

using k ≤ ℓ− 1 for the last inequality. This is striclty larger than m̂(Cℓ) = ℓ−1/(ℓ−1)
ℓ−1−1/(ℓ−1) .

Suppose now that the path F−1 is not a subgraph of I ∪
⋃

i≥ Fi. Since F−1 ∩ (
⋃

i≥1 Fi) has

at least two components, so does F−1 ∩ (I ∪
⋃

i≥1 Fi). Let v̂ = v
(
F−1 ∩ (I ∪

⋃
i≥1 Fi)

)
and ê =

e
(
F−1 ∩ (I ∪

⋃
i≥1 Fi)

)
. Observe that ê ≥ 1 and v̂ ≥ 3 since F−1 ∩ (I ∪

⋃
i≥1 Fi) has at least one edge
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and it contains the two ends of F−1. We can write

v(G) − v(I) = ℓ+

k∑
i=1

(ℓ− vi) + (ℓ− v̂) − v

I ∩ ⋃
i≥1

Fi


= (k + 2)ℓ−

k∑
i=1

vi − v̂ − v

I ∩ ⋃
i≥1

Fi


and, using ei ≤ vi − 1 for each i ∈ [k],

e(G) − e(I) = ℓ− 1 +

k∑
i=1

(ℓ− ei) + (ℓ− 1 − ê) ≥ (k + 2)ℓ+ k − 2 −
k∑

i=1

vi − ê

Using Observation 3.1 and
∑k

i=1 vi ≥ k + ℓ− 1 we have

e(G) − e(I)

v(G) − v(I)
≥ (k + 1)ℓ− 1 − ê

(k + 1)ℓ− k + 1 − v
(
I ∩

⋃
i≥1 Fi

)
− v̂

(6)

If F−1 ∩ (I ∪
⋃

i≥1 Fi) has exactly two connected components, then one of the edges of I must contain

a vertex in F−1 ∩
⋃

i≥1 Fi. Hence v
(
I ∩

⋃
i≥1 Fi

)
≥ 1. Substituting this and ê = v̂ − 2 in (6) yields

e(G) − e(I)

v(G) − v(I)
≥ (k + 1)ℓ− v̂ + 1

(k + 1)ℓ− k − v̂
≥ (k + 1)ℓ− 2

(k + 1)ℓ− k − 3
=

ℓ− 2/(k + 1)

ℓ− 1 − 2/(k + 1)
> m̂(Cℓ),

using v̂ ≥ 3 and Observation 3.1 for the penultimate inequality, and k ≤ ℓ − 1 and ℓ > 3 for the last

ienquality.

If F−1 ∩ (I ∪
⋃

i≥1 Fi) has at least 3 connected components, notice that it must also have at least

four vertices, since ê ≥ 1. Substituting ê ≤ v̂ − 3 in (6) yields

e(G) − e(I)

v(G) − v(I)
≥ (k + 1)ℓ− v̂ + 2

(k + 1)ℓ− k + 1 − v̂
≥ (k + 1)ℓ− 2

(k + 1)ℓ− k − 3
> m̂(Cℓ)

using v̂ ≥ 4 for the penultimate inequality and the same caclulation as above for the last inequality. □

Proof of Lemma 5.5. Let F0, F−1 be the central and attached copies of Pℓ in G and let x, y be their

ends. First suppose that I contains all copies of Cℓ in G. Let F ′
−1 = F−1 ∩ I, and notice that x, y ∈ I,

since they both lie in a copy of Cℓ; and v(F ′
−1) < v(F−1), since v(I) < v(G). Thus if we let V0 := V (F ′

−1)

and E0 := E(F ′
−1) ∪ {xy}, this defines a subgraph H0 = (V0, E0) of Cℓ with 2 ≤ v(H0) < ℓ. Then

e(G) − e(I)

v(G) − v(I)
=

ℓ− 1 − e(F ′
−1)

v(F−1) − v(F ′
−1)

=
ℓ− e(H0)

ℓ− v(H0)
> m2(Cℓ) > m̂(Cℓ),

using Proposition 3.4 for the penultimate inequality.

Suppose now that I contains at least one but not all copies of Cℓ in G, and let H be a copy of

Cℓ in I. Order the path F0 from left to right such that x is the leftmost vertex. We will consider

a slightly different order on the attached Cℓ’s than the one in Definition 3.5. Let e be the leftmost

edge of I ∩ F0, and suppose there are ℓ0 ≥ 0 edges on the left of e in F0. Let e1, . . . , eℓ0 be an

enumeration of the edges on F0 in the order that we encounter them as we move left along F0 from

e, with e1 ∩ e ̸= 0 and eℓ0 ∋ x. Let eℓ0+1, . . . , eℓ−2 be an enumeration of the edges of F0 in the order

that we encounter them as we move to the right along F0 from e, with e ∩ eℓ0+1 ̸= ∅ and eℓ−2 ∋ y. Let

ϕ : E(F0) → [ℓ − 1] be the map with ϕ(e) = ℓ − 1 and ϕ(ei) = i. Consider the linear order <ϕ on the

attached Cℓ’s as follows: for two attached Cℓ’s F ̸= F ′, we have F <ϕ F
′ if ϕ (E(F ) ∩ E(F0)) is less

than ϕ (E(F ′) ∩ E(F0)) in the lexicographic ordering. Suppose there are k ≤ ℓ − 2 copies of Cℓ in G
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that are not contained in I, and let H1 <ϕ · · · <ϕ Hk be an enumeration according to this order. We

define an order ≺ϕ on V (F0)∩
⋃

j≥1 V (Hj) as follows. Let u ̸= v ∈ V (F0)∩
⋃

j≥1 V (Hj) and let Eu, Ev

be the edges in F0 ∩
⋃

j≥1 V (Hj) containing u and v respectively. Then u ≺ϕ v if ϕ(Eu) is less than

ϕ(Ev) in the lexicographic ordering. Let H ′
i = Hi ∩

(
I ∪

⋃
1≤j<iHj

)
and H ′

−1 = F−1 ∩
(
I ∪

⋃
j Hj

)
.

Observe that for every i ∈ [k], v (H ′
i) ≥ 1, since the first vertex of V (Hi)∩V (F0) in the order ≺ϕ lies in

V (I)∪
⋃

1≤j<i V (Hj). Also, H ′
i is a proper subgraph of Hi: indeed, otherwise, since Hi shares no edges

with I, E(Hi) ⊆
⋃

1≤j<iHi, which contradicts the minimality of G with respect to every edge of F0

having an attached Cℓ. Moreover, H ′
−1 contains {x, y} and hence consists of at least two components

unless F−1 ⊆ I ∪
⋃

j Hj .

Then we may rewrite d̂(G, I) as follows.

d̂(G, I) =

∑k
i=1 (ℓ− e(H ′

i)) + ℓ− 1 − e(H ′
−1)∑k

i=1 (ℓ− v(H ′
i)) + ℓ− v(H ′

−1)
.

Let J = {i ∈ [k] : v (H ′
i) > 1} and s = k − |J |. Then we can rewrite the right hand side of the last

inequality as ∑
i∈J (ℓ− e(H ′

i)) + sℓ+ ℓ− 1 − e(H ′
−1)∑

i∈J (ℓ− v (H ′
i)) + s(ℓ− 1) + ℓ− v(H ′

−1)
.

By Proposition 3.4, for every i ∈ [J ]

ℓ− e (H ′
i)

ℓ− v (H ′
i)
> m2(Cℓ) > m̂(Cℓ). (7)

We now want to lower bound the ratio of the remaining terms, and use Observation 3.1 to deduce

d̂(G, I) ≥ m̂(Cℓ). First suppose that F−1 is not equal to H ′
−1. Then H ′

−1 has at least two connected

components i.e. e(H ′
−1) ≤ v(H ′

−1) − 2. This gives

sℓ+ ℓ− 1 − e(H ′
−1)

s(ℓ− 1) + ℓ− v(H ′
−1)

≥
(s+ 1)ℓ+ 1 − v(H ′

−1)

(s+ 1)(ℓ− 1) + 1 − v(H ′
−1)

which is equal to
ℓ− (v(H ′

−1) − 1)/(s+ 1)

ℓ− 1 − (v(H ′
−1) − 1)/(s+ 1)

≥ m̂(Cℓ).

The last inequality follows from Observation 3.1 and
v(H′

−1)−1

s+1 ≥ 1
ℓ−1 , which is a consequence of s ≤

k ≤ ℓ − 2 and v(H ′
−1) ≥ 2. This holds with equality if and only if V (H ′

−1) = {x, y} and s = ℓ − 2.

This implies J = ∅ and thus, under the assumption F−1 is not fully contained in I, we have that

d̂(G, I) = m̂(Cℓ) if and only if G = GCℓ
and I = Cℓ.

Claim 5.6. If F−1 = H ′
−1, then J ̸= ∅.

Before proving Claim 5.6, we show how it implies the lemma. Suppose F−1 = H ′
−1 and let j∗ ∈ J .

Note that in this case s = k−|J | < ℓ−2. Then, using e(Hj∗) ≤ v(Hj∗)−1, we have that
ℓ−e(Hj∗ )+sℓ

ℓ−v(H′
j∗ )+s(ℓ−1)

is at least

ℓ− v(H ′
j∗) + 1 + sℓ

ℓ− v(H ′
j∗) + s(ℓ− 1)

=
(s+ 1)ℓ+ 1 − v(H ′

j∗)

(s+ 1)(ℓ− 1) + 1 − v(H ′
j∗)

=
ℓ− (v(H ′

j∗) − 1)/(s+ 1)

ℓ− 1 − (v(H ′
j∗) − 1)/(s+ 1)

.

By the same calculation as for the preceding inequality we see that this is strictly larger than m̂(Cℓ).

Finally, if |J | ≥ 2, using (7) and the last item of Observation 3.1, we have∑
i∈J\{j∗}(ℓ− e(H ′

i))∑
i∈J\{j∗}(ℓ− v(H ′

i))
> m̂(Cℓ)
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and hence d̂(G, I) > m̂(Cℓ) follows using one more time the last item of Observation 3.1. We now

prove Claim 5.6, which completes the proof of the lemma.

Proof of Claim 5.6. Suppose first that F−1 ⊆
⋃k

j=1Hj . Clearly a single attached Cℓ cannot contain

F−1 as a subgraph, so for some pair of incident edges uv, vw of F−1 there are i ≺ϕ j with uv ∈ E(Hi)

and vw ∈ E(Hj). In particular, v is an internal vertex of F−1 i.e. v /∈ {x, y} and so v /∈ V (F0). It is

not hard to see that Hj shares the first vertex (in ≺ϕ) in E(Hj) ∩ E(F0) with I ∪
⋃

s<j Hs. Therefore

v(H ′
j) ≥ 2, as required.

Next suppose that F−1 ⊆ I. Let u, v be the first and last vertices of V (Hk)∩ V (F0) in ≺ϕ, and note

that u ̸= v, since Hk contains at least one edge of F0. We will show that u, v ∈ V (H ′
k). It is not hard

to see that u ∈ V (I)∪
⋃

1≤j<k V (Hj). Note that v is the last vertex that has an atttached Cℓ not in I.

So either v lies in another attached Cℓ which is in I; or it is one of {x, y}. In either case, v ∈ V (I).

Finally suppose that neither of the above holds. Then, similarly to the first case, there is a pair

of incident edges uv, vw of F−1 with uv ∈ I, vw ∈
⋃

j≥1Hj . Then v /∈ V (F0), and for some i ∈ [k],

v ∈ V (Hi), so v ∈ V (H ′
i). Since H ′

i contains also a vertex in F0, we have v(H ′
i) ≥ 2. □

□

6. The deterministic lemma: colouring very good collages

In this section we will prove Lemma 4.4, which says that every very good collage C admits a good

colouring which has no dangerous C2ℓ−2. Recall that a good colouring is one such that there is no

monochromatic Cℓ and every red edge lies on a Cℓ. Recall that a dangerous C2ℓ−2 is a coloured C2ℓ−2

consisting of a red and a blue Pℓ−1. We call an uncoloured copy of C2ℓ−2 potentially dangerous if it is

the central C2ℓ−2 of some G ∈ GCℓ
. By Proposition 2.3, in a graph H coloured with a good colouring

every dangerous C2ℓ−2 is a potentially dangerous C2ℓ−2 in H. We will use this fact throughout this

section without mentioning Proposition 2.3. From now on, we say a colouring of a very good collage is

very good if i) it has no monochromatic Cℓ, ii) every red edge lies in a Cℓ and iii) it has no dangerous

C2ℓ−2. In other words, we will show that every very good collage admits a very good colouring. We

will do so by removing a carefully selected subset of edges from the collage so that we can extend a

very good colouring of the rest of the collage to these edges. We will use a ‘discharging’ method to find

these edges. The discharging method will distribute a weight assigned initially to vertices and edges

of the collage to a collection of edge disjoint subgraphs of the collage, which we call blocks. A block in

the collage is a subgraph X that satisfies one of the following

i) X ∼= 2Cℓ and X shares no edge with a copy of Cℓ which is not a subgraph of X;

ii) X ∼= Cℓ and X shares no edge with another copy of Cℓ.

As the next lemma implies, the collection of all blocks in a very good collage consists of all the copies

of Cℓ in the collage. We will use this throughout this section without mentioning Lemma 6.1.

Lemma 6.1. Let X,Y ∼= Cℓ be subgraphs of a very good Cℓ-collage and suppose that E(X)∩E(Y ) ̸= ∅.
Then X ∩ Y is exactly one edge, i.e. X ∪ Y ∼= 2Cℓ.

We prove this lemma, along with others that exclude other graphs as subgraphs of very good collages,

in Section 6.2. The carefully selected edges that we will remove from a very good collage, to extend a

very good colouring of the rest of the collage, is given in the next lemma.

Lemma 6.2. Let C be a very good Cℓ-collage. Then C contains a block X that satisfies one of the

following.

a) X ∼= 2Cℓ and denoting the Cℓ’s of X by X1, X2, for some i ∈ {1, 2} Xi has two edges other

than X1 ∩X2 such that neither of them is on a copy of C2ℓ−2 not contained in X.
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b) X ∼= Cℓ and there is an edge xy ∈ E(X) such that neither x nor y lies in any other block.

c) ℓ = 4, X ∼= C4, and every potentially dangerous C6 containing an edge of X shares at most one

other edge with a block other than X.

We are now ready to prove using Lemma 6.2 the main result of this section, Lemma 4.4, before

proving Lemma 6.2 in the remainder of this section.

Proof of Lemma 4.4. Suppose for the sake of contradiction that there exists a very good collage C0

which does not admit a very good colouring. Let C ⊆ C0 be a collage that does not admit a very good

colouring but for any e ∈ E(C), C \ {e} does; such C exists since, for example, a sinlge Cℓ admits a

very good colouring. Observe that being a very good collage is defined by excluding subgraphs and

hence C and every collage that is a subgraph of C is very good. We will show that C admits a very

good colouring, thus deriving a contradiction. By Lemma 6.2, C contains a block X that satisfies one

of a), b), c).

Suppose that C contains a block X ∼= 2Cℓ satisfying a) and let xy, zw ∈ E(X) be the edges as in a),

where we may have {x, y} ∩ {z, w} ̸= ∅. Let C1, . . . , Ck be the (edge-disjoint) collection of maximal

collages of C \ {xy, zw} (all of which are very good) and let E0 = C \
(
{xy, zw} ∪

⋃k
i=1E(Ci)

)
be

the remaining edges of C \ {xy, zw} that lie neither on a Cℓ nor on some G ∈ GCℓ
fully contained in

C \ {xy, zw}. Every Ci has a very good colouring ϕi. Let ϕ be the colouring on E0 ∪
⋃k

i=1E(Ci) that

agrees with ϕi on E(Ci), for every i, and colours every edge of E0 blue. We will extend ϕ to a colouring

ϕ′ that assigns colours also to xy and zw. Observe that ϕ′ can only fail to be a very good colouring due

to either a Cℓ containing one of xy and zw being monochromatic, or a C2ℓ−2 containing one of xy, zw

being dangerous. Any other Cℓ or C2ℓ−2 is guaranteed to satisfy the properties of a very good colouring

because ϕi is a very good colouring of the collage Ci, for every i ∈ [k], and the edges E0 can only lie

in a Cℓ or C2ℓ−2 that also contains one of xy, zw. We first try extending ϕ by colouring xy blue and

zw red. The single copy of Cℓ containing both of them is not monochromatic, and the only dangerous

C2ℓ−2 that this colour assignment creates is a subgraph of X by assumption a). If this colouring does

not create a dangerous C2ℓ−2, we extend ϕ to a colouring ϕ′ assigning blue xy and red to zw; then ϕ′

is a very good colouring of C, and this completes the proof if C contains a block X satisfying a).

Suppose now that colouring xy blue and zw red results in a dangerous C2ℓ−2. Observe that in every

dangerous C2ℓ−2, every blue edge is incident to at least one blue edge and every red edge is incident

to at least one red edge. Then at least one end of xy, say x, is incident to a blue edge in ϕ and at

least one end of zw, say z, is incident to a red edge in ϕ. Suppose {x, y} ∩ {z, w} ̸= ∅. Then in the

colouring extending ϕ by colouring xy blue and zw red, the pair {xy, zw} is one of the two possible

pairs of incident edges of different colours in a dangerous C2ℓ−2. Then extending ϕ by colouring instead

xy red and zw blue ensures that the C2ℓ−2 in X is not dangerous, and hence ϕ is extended to a very

good colouring. Suppose then {x, y} ∩ {z, w} = ∅. In this case, we again extend ϕ to a colouring ϕ′

by colouring xy red and zw blue, and claim that this results in a colouring with no dangerous C2ℓ−2

in X. Suppose for the sake of contradiction that this is not the case. Then in ϕ′, y is incident to a

red edge and w is incident to a blue edge (and both of these edges are different from xy, zw, since

{x, y} ∩ {z, w} ≠ ∅), so {xy, zw} is one of the two possible pairs of different-coloured, non-adjacent

edges in a dangerous C2ℓ−2 such that each edge is incident to both colours. Then there must be ℓ− 2

red edges between y and z and ℓ − 2 blue edges between x and w, along the C2ℓ−2 in X. But xy, zw

are in the same Cℓ and neither of them is the intersection of the two Cℓ’s, so the shortest path between

them in the C2ℓ−2 has at most ℓ − 3 edges between them, yielding a contradiction. We conclude that

ϕ′ has no dangerous C2ℓ−2 and thus is a very good colouring.
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x

y = w

z

X1

X2

Figure 6. Case a) with y = w when colouring xy

blue and zw red results in a dangerous C2ℓ−2.

Figure 7. A dangerous C6 has three red edges,

and hence is avoided in case c).

Suppose there is a block X ∼= Cℓ satisfying b), and let xy ∈ E(X) such that neither x nor y lie in

any other block. Let C1, . . . , Ck be the edge-disjoint collection of maximal collages of C \ {xy} and let

E0 = C \
(
{xy} ∪

⋃k
i=1E(Ci)

)
be the remaining edges of C that do not lie on any Cℓ or copy of a

G ∈ GCℓ
. Each Ci is a very good collage and hence has a very good colouring ϕi. Let ϕ be the colouring

on E0 ∪
⋃k

i=1E(Ci) that agrees with ϕi on E(Ci), for every i, and colours every edge of E0 blue. We

extend ϕ to xy by colouring xy red, and claim the resulting colouring is very good. First, this does

not create any monochromatic Cℓ: the only copy of Cℓ that may be monochromatic is one containing

xy, and X is the unique such Cℓ, since blocks are edge disjoint. Moreover E(X) \ {xy} ⊆ E0 (again

because blocks are edge disjoint), so E(X)\{xy} is coloured blue. Second, there is no dangerous C2ℓ−2.

Every potentially dangerous C2ℓ−2 in the collages C1, . . . , Ck is contained in a single collage which is

coloured by one of the very good colourings ϕ1, . . . , ϕk. Hence any dangerous C2ℓ−2 when extending ϕ

to xy must contain xy. Observe that in a dangerous C2ℓ−2, every red edge has at least one incident red

edge. However, all edges incident to x, y other than xy do not lie in a block, so they are in E0 and are

coloured blue. We conclude that C has a very good colouring.

Suppose ℓ = 4 and there is a block X ∼= C4 satisfying c). Pick xy ∈ E(X) arbitrarily and let Ci and

ϕi where i ∈ [k], E0 and ϕ be defined as above. We claim that we can extend ϕ to a very good colouring

ϕ′ of C by colouring xy red. First notice that E(X) \ {xy} ⊆ E0, since the only block that any edge

in E(X) lies in is X. Hence ϕ assigns blue to every edge in E(X) \ {xy}, and colouring xy red ensures

that X is not monochromatic, and also that ϕ′ is a good colouring. It remains to show that colouring

xy red does not create any dangerous C6. Because ϕ′ is a good colouring, any dangerous C6 will be

a subgraph of some potentially dangerous C6 by Proposition 2.3. By condition c), every potentially

dangerous C6 that contains xy shares at most one other of its edges with another block. Therefore any

potentially dangerous C6 containing xy can have at most two red edges: xy and the the edge it has of

the block other than X, and hence is not dangerous. By the definition of ϕ, there is no dangerous C6

in E(C) \ {xy}, so we conclude that ϕ′ is a very good colouring. □

6.1. Discharging. As mentioned earlier, we will use a ‘discharging’ method to find the block X in

Lemma 6.2. Using such a method to prove the deterministic lemma in a 0-statement in random Ramsey
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theory was pioneered in the recent works [1, 16, 25]. Our approach builds on the corresponding lemma

in the work of Alon, Morris and Samotij [1].

We will give two distinct discharging procedures, depending on whether the collage is a C4-collage

or a Cℓ-collage with ℓ ≥ 5. Recall that m̂(Cℓ) = ℓ2−ℓ−1
ℓ(ℓ−2) , so m̂(C4) = 11/8, and that every very good

Cℓ-collage C has eC/vC < m̂(Cℓ).

Discharging for very good C4-collages. Assign weight −8 to each edge and 11 to every vertex of

the collage.

i) Every edge which lies in a block sends its weight to its own block.

ii) Every vertex in a block splits its weight equally among all the blocks it lies in.

After the end of stage ii) the only vertices and edges with non-zero weight are those not in

any block.

iii) Every edge with both ends in different blocks splits its weight equally among all the blocks that

its ends lie in.

At this stage edges with at most one end in a block and vertices not lying in any block are the

only vertices and edges with non-zero weight. Since such edges and vertices lie on an attached

P3 of some G ∈ GC6 , every such vertex and every end of such an edge has a neighbour in a

block. We will first move all weight to edges with exactly one end in a block and then to blocks.

iv) For every edge which has no end in a block, both ends have a neighbour in a block. Every such

edge splits its weight equally between its ends.

v) Every vertex splits its weight equally among all its incident edges whose other end is on a block.

At this stage, every vertex has weight zero, and only edges with exactly one end in a block

have non-zero weight.

vi) Split the weight of every edge with exactly one end in a block equally among all the blocks that

this end lies in.

Since C is a very good C4-collage, eC/vC < m̂(C4) = 11/8. Hence, the total weight of the collage at

the beginning of the discharging procedure is positive. Since all weight is distributed to the blocks,

at the end of the discharging procedure there is a block with positive weight. The next lemma allows

us to argue locally about whether a block has positive weight. Given a subgraph C ′ of a collage C

that contains all blocks of C and a block X we write wC′(X) for the weight of X at the end of the

discharging procedure when it is executed on input C ′. We write w(X) for wC(X).

Lemma 6.3. Let C be a good C4-collage and let C ′ be a subgraph of C that contains every block of C.

Then for every block X, wC′(X) ≥ wC(X).

Proof. Because C ′, C have the same blocks, they only differ at edges and vertices which do not lie in any

block. Hence, at the end of stage ii) blocks have the same weight in both C,C ′. Any edge considered

in stage iii) that is in C and not in C ′ will decrease the weight of its incident blocks (since edges have

negative weight at the beginning of the discharging procedure).

Observe that the weight of blocks changes again in stage vi). Moreover, at the end of stage v), every

vertex has weight zero and only edges with exactly one end in a block have non-zero weight. Then

these transmit their weight to a block. Therefore, to complete the proof of the lemma, it suffices to

show that for every edge e with exactly one end in a block, at the end of stage v)

a) wC′(e) ≥ wC(e), if e lies in both C,C ′;

b) wC(e) ≤ 0, if e lies in C and not in C ′.

The lemma is then an immediate consequence of a) and b). From now one, we write wC(e), wC′(e) to

denote the weight of e at the end of stage v) when the discharging procedure is executed on C and C ′

respectively.
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Let e = xy be an edge in C ′ and suppose x is in a block and y is not. Let bC′(y) be the number

of neighbours of y in C ′ which lie in a block and nC′(y) be the number of neighbours not lying in any

block. Define bC(y), nC(y) in the same manner for C. Clearly, nC(y) + bC(y) ≥ 2, since any collage has

minimum degree at least 2, and bC(y) ≥ 1, since x is in a block. We have

wC(xy) = −8 + 11/bC(y) − 4 · nC(y),

where the term −4 · nC(y) comes from stage iv) (and that this weight is passed on to xy in the next

stage). If nC(y) ≥ 1, then wC(xy) ≤ −8 + 11 − 4 · 1 = −1; otherwise, bC(y) ≥ 2, and then we have

wC(y) ≤ −8 + 11/2 = −5/2, thus proving b). For a), we have

wC′(xy) = −8 + 11/bC′(y) − 4 · nC′(y) ≥ −8 + 11/bC(y) − 4 · nC(y) = wC(xy),

using nC′(y) ≤ nC(y) and bC′(y) ≤ bC(y). □

Discharging for very good Cℓ-collages, ℓ ≥ 5. Assign weight ℓ2 − ℓ − 1 to each vertex in a block

and −ℓ(ℓ − 2) to each edge in a block. We do not assign any weight to vertices and edges not in any

block.

1) For each edge that is on a block, move its weight to this block.

2) For each vertex that is on at least one block, split its weight equally among all the blocks it lies

in.

As the next lemma shows, the subgraph of the collage consisting of the union of all Cℓ’s has density

less than m̂(Cℓ), and hence the total weight of the collage at the beginning is positive. Since all the

weight is reassigned to the blocks at the end of the discharging procedure there is a block X with

w(X) > 0.

Lemma 6.4. Let C be a very good Cℓ-collage with ℓ ≥ 5 and let C ′ ⊆ C be the union of all blocks.

Then e(C ′)/v(C ′) < m̂(Cℓ).

Proof. By the definition of a collage, every edge which is not contained in a Cℓ i.e. any edge not

contained in a block, is contained in an attached Pℓ of some G ∈ GCℓ
. Let F1, . . . , Fk be an enumeration

of all the attached Pℓ’s in C. Let Hi := Fi ∩ (C ′ ∪
⋃

j<i Fj), and note that v(Hi) ≥ 2, since the ends of

Fi lie in some central Pℓ and hence in some Cℓ. Let I ⊆ [k] be the indices i with V (Hi) ⊊ V (Fi) i.e.

those for which Fi is not a subgraph of C ′ ∪
⋃

j<i Fj .

We have eC/vC < m̂(Cℓ). We can write e(C) = e(C ′) +
∑

i∈I(ℓ − 1 − e(Hi)) and v(C) = v(C ′) +∑
i∈I(ℓ− v(Hi)). Then by Observation 3.1 it suffices to show that for every i ∈ I,

ℓ− 1 − e(Hi)

ℓ− v(Hi)
> m̂(Cℓ).

Let F̂i be a copy of Cℓ on V (Fi) with edges E(Fi) and the edge between the ends of Fi. Let Ĥi be the

subgraph of F̂i on V (Hi) with edges E(Hi) and the edge between the ends of Fi. Then the left hand

side of the above inequality equals ℓ−e(Ĥi)

ℓ−v(Ĥi)
, and by Proposition 3.4 it is strictly greater than m2(Cℓ).

Since m2(Cℓ) > m̂(Cℓ) this completes the proof. □

The next three lemmas give the properties of a positive weight block we need in order to extend a

very good colouring of a collage; Lemma 6.2 is a direct consequence of these three lemmas, and the

fact that every very good collage has a block whose weight is positive at the end of the discharging

procedure. Recall from above that given a subgraph C ′ of a collage C that contains all blocks of C

and a block X we write wC′(X) for the weight of X at the end of the discharging procedure when it is

executed on input C ′. We write w(X) for wC(X).
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Lemma 6.5. Let C be a very good Cℓ-collage, where ℓ ≥ 4, and let X ∼= Cℓ be a subgraph of C. If X

shares at least three vertices with another block, then w(X) ≤ 0.

Lemma 6.6. Let C be a very good C4-collage and let X ∼= C4 be a subgraph of C. Suppose that for

every edge of X at least one end is in another C4 and w(X) > 0. Then any potentially dangerous C6

that contains at least one edge of X, shares at most one other edge with a block other than X.

Lemma 6.7. Let C be a very good Cℓ-collage, where ℓ ≥ 4, and let X ∼= 2Cℓ be a subgraph of C. Let

X1, X2 be the two Cℓ’s of X. If w(X) > 0 at the end of either discharging procedure for Cℓ-collages, then

for some i ∈ {1, 2}, Xi has two edges other than X1 ∩X2 such that neither of them is in a potentially

dangerous C2ℓ−2 not contained in X.

Proof of Lemma 6.2. For ℓ ≥ 5 it follows from Lemma 6.4 that the weight of the collage at the beginning

of the discharging procedure is positive; for ℓ = 4 it follows immediately from the definition of a very

good collage. Hence at the end of either discharging procedure, since the weight assigned initially to

edges and vertices is distributed to blocks, there exists a block X with positive weight. If X ∼= 2Cℓ

then Lemma 6.7 gives the required conlcusion. If instead X ∼= Cℓ, by Lemma 6.5 X shares at most two

of its vertices with another block. Since the vertex cover of Cℓ for ℓ ≥ 5 is at least 3, it follows that if

ℓ ≥ 5 then for one edge of X neither end is shared with another block. Finally, if X ∼= C4 and every

edge of X shares one of its ends with another block, the lemma follows from Lemma 6.6. □

Proof of Lemma 6.5. Recall that at the beginning of either discharging procedure each vertex is assigned

weight ℓ2 − ℓ− 1 and each edge −(ℓ2 − 2ℓ). Let C ′ be the subgraph of C that is the union of all blocks

of C. If s ≥ 3 vertices of X are shared with another block they contribute at most half of their weight

to X, yielding

wC′(X) ≤ ((ℓ− s) + s/2) (ℓ2 − ℓ− 1) − ℓ(ℓ2 − 2ℓ)

≤ (ℓ− 3/2) (ℓ2 − ℓ− 1) − ℓ(ℓ2 − 2ℓ)

=
(
ℓ3 − 5ℓ2/2 + ℓ/2 + 3/2

)
−
(
ℓ3 − 2ℓ2

)
= −ℓ2/2 + ℓ/2 + 3/2

≤ −16/2 + 4/2 + 3/2 = −9/2 < 0,

where we used for the last inequality that −ℓ2/2 + ℓ/2 + 3/2 is decreasing for ℓ ≥ 4. For ℓ ≥ 5, this

immediately implies that w(X) < 0 at the end of the discharging procedure, and for ℓ = 4 it follows

from Lemma 6.3. □

For the proof of Lemma 6.6 we will need the following two corollaries of lemmas which are stated

and proven in the next subsection. The proofs of Corollaries 6.8 and 6.9 are given after the proof of

Lemma 6.12.

Corollary 6.8. Let G ∈ GC4 be a subgraph of a very good C4-collage. Then G is a copy of 2C4, GC4

or the graph G0 in Figure 9.

Corollary 6.9. Let H ∼= C4 and G ∈ GC4 be subgraphs of a very good C4-collage. Suppose that H

shares an edge with the attached P3 of G. Then G ∼= GC4, and G ∩H is exactly one edge.

Proof of Lemma 6.6. We will use several times without mentioning Lemma 6.3, that the weight of a

block in the collage is at most the weight by examining only a subgraph of the collage that contains all

blocks. Our aim is to see how subgraphs containing X pass weight on to X and show that, if X does

not satisfy the conclusion of the lemma, then w(X) < 0.
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By Lemma 6.5, at most 2 vertices of X are shared with other blocks; and if only one vertex is shared,

clearly one edge of X shares neither of its ends with another block, which contradicts the assumption

on X. Hence X has exactly two vertices that it shares with another block, and these are non-adjacent:

otherwise again for one edge of X neither end is shared with another block. If one of these vertices is

shared by two other blocks, then

w(X) ≤ 4 · (−8) + 2 · 11 + 11/2 + 11/3 < 0,

so we can conclude that each of the two vertices is shared with exactly one other block. We thus have

w(X) ≤ 4 · (−8) + 2 · 11 + 2 · 11/2 = 1, so if some edge (that we have not considered yet) with only one

end in X sends weight −1 or less to X we can deduce w(X) ≤ 0.

Consider a potentially dangerous C6 that shares an edge with X and let G be a copy of a graph

in GC4 containing this C6. By Corollary 6.8, either G ∼= GC4 or G ∼= G0, where G0 is the graph in

Figure 9.

First suppose that X is not one of the attached C4’s of G. Then it shares an edge with the attached

P3 of G and by Corollary 6.9 G ∼= GC4 , and G∩X is a single edge. That is, G∪X is one of the graphs

in Figure 8. We may assume that G∪X is isomorphic to the left graph in Figure 8 since otherwise we

can view X as an attached C4 of GCℓ
, a case that we will consider next. Let y be the unique vertex in

the edge of X ∩G which is shared with another block, and let x be the other vertex on this edge which

does not lie in another block (since no two neighbouring vertices of X lie in another block). Then the

other edge in the attached P3 incident to x, xu, is not in a block (since x is not in a block) and hence

sends weight at most −4 to X, yielding w(X) < 0. Therefore we may assume for the remainder of the

proof that there is no G ∈ GC4 such that X shares an edge with G and X is not an attached C4 of G.

Hence X is an attached C4 of either a GC4 or a G0.

X

u

x y

X

Figure 8. X is not an attached C4.

X is not the ‘middle’ attached C4 of a GC4 since otherwise it shares two adjacent vertices with other

blocks. Hence G∪X is one of the graphs in Figure 9. Following all three graphs in Figure 9, let ab, bc, cd

be the edges of the C6 without an attached C4, with a ∈ V (X). We will consider different cases based
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on whether b, c and a are on other blocks, treating all three cases of of Figure 9 simultaneously at the

beginning until we exclude the top right and the bottom graphs. Observe though that a can only be

in another block in the first graph of Figure 9, since in the other two graphs X would then have two

neighbouring vertices, a and z, shared with other blocks.

X

z

a

b c

d

X z

a

b c

d

X
z

a

b c

d

Figure 9. G0 at the top, with the two possibilities for X, and GC4 at the bottom. These

and 2C4 are the only graphs in GC4 that can be subgraphs of a very good C4-collage by

Lemma 6.12

If b is on another block, then X receives weight at most 1
2 · w(ab)/2 = −2 via ab, where we are

dividing by since a may also be shared by another block, and the weight of the edge ab is split equally

between a, b. If b is not on another block and c is, then X received via ab weight 1
2(w(b)/2 +w(ab)) =

1
2(11/2−8) = −5/4. Suppose that neither b nor c is on another block, and also that a is not on another

block. The weight of bc then is split equally between b and c. Then at the end of stage vi) X receives

via ab a further weight

w(ab) + w(b) + w(bc)/2 = −8 + 11 − 4 = −1



TWO-ROUND RAMSEY GAMES FOR CYCLES ON RANDOM GRAPHS 29

and thus w(X) ≤ 0. Since a cannot be on another block when G ∼= GCℓ
or G ∼= G0 and X is the C4

sharing only one edge with the central C6, we may assume for the remainder that G ∼= G0 and X is

the C4 sharing two edges with the central C6 i.e. G,X are as in the top left graph of Figure 9.

If the only potentially dangerous C6 sharing an edge with X is the one in G the Lemma holds.

Suppose then that there exists another potentially dangerous C6, Z, that X shares an edge with, and

let G′ ̸= G be a copy of either G0 or GCℓ
containing Z as a central C6 and having X as an attached Cℓ

(by the argument at the beginning of the proof we have excluded other possibilities for G′, X). Then

X is not an attached C4 of G′ sharing only one edge with the central C6 (i.e. G′ and X cannot be as

in the top right or bottom graph in Figure 9), since otherwise the above argument implies w(X) ≤ 0.

Hence G′ ∼= G0 and X is the unique attached C4 of G′ sharing two edges with the central C6. We

conclude that Z, being the central C6 of G′, shares exactly one edge with the attached C4 of G′ other

than X, and by Corollary 6.9 shares no edge with any other C4. Since Z is an arbitrary potentially

dangerous C6 sharing an edge with X, it follows that X satisfies the conclusion of the Lemma. □

For the proof of Lemma 6.7 we will need the following lemma. Essentially it says that, inside a very

good collage, an X ∼= 2Cℓ can share an edge with a C2ℓ−2 which is not contained in X only in one way:

they share one edge only, the C2ℓ−2 is in a copy G of GCℓ
, and the Cℓ in X sharing an edge with the

C2ℓ−2 is one of the attached Cℓ’s of G. We will prove Lemma 6.10 in the next subsection.

Lemma 6.10. Let C be a very good collage. Let X,Y be subgraphs of C with Y ∼= C2ℓ−2 contained in

some graph in GCℓ
and let X ∼= 2Cℓ. Suppose that Y is not a subgraph of X and that it contains an

edge of X other than the intersection of the two Cℓ’s in X. Then

• X ∩ Y is one edge;

• Y is contained in a copy G of GCℓ
;

• the only copies of Cℓ sharing an edge with Y are those in G, and X contains one of them.

Proof of Lemma 6.7. Suppose for the sake of contradiction that neither Xi has such a pair of edges.

By Lemma 6.10 for both X1, X2 among all edges apart from X1 ∩X2, all but one lies on the C2ℓ−2 of a

GCℓ
, and X1, X2 play the role of an attached Cℓ. Observe that in a GCℓ

, for every attached Cℓ, one of

the vertices on the edge of the Cℓ that is also on the C2ℓ−2 is shared with another Cℓ. Hence there are

V1 ⊆ V (X1), V2 ⊆ V (X2) with Vi covering all but one edge of Xi \ (X1 ∩X2), with every v ∈ Vi being

shared with another block. Let s = |V1 ∪ V2|, and notice that s ≥ 2: if s = 1 some Xi has two edges

that do not intersect V1 ∪ V2. Let C ′ ⊆ C be the union of all blocks in C. Since s vertices contribute

weight at most (ℓ2 − ℓ− 1)/2 to X, we have

wC′(X)≤(2ℓ− 2 − s/2)(ℓ2 − ℓ− 1) − (2ℓ− 1)(ℓ2 − 2ℓ)

≤ (2ℓ− 3)(ℓ2 − ℓ− 1) − (2ℓ− 1)(ℓ2 − 2ℓ)

= −ℓ+ 3 ≤ −1.

For ℓ ≥ 5, this immidiately implies that w(X) < 0 at the end of the discharging procedure, and for

ℓ = 4 it follows from Lemma 6.3. This gives the required contradiction. □

6.2. Small graphs excluded from very good collages. First we prove Lemma 6.1, which says that

any Cℓ can share an edge with at most one other copy of Cℓ, and that their intersection consists of at

most one edge.

Proof of Lemma 6.1. Let Y ̸= X be another copy of Cℓ. We will first show that Y can share at most

two vertices with X. Suppose to the contrary that v(Y ∩X) ≥ 3. We will show that the graph X ∪ Y
satisfies (3), and thus cannot be contained in a very good collage. Since X ∩ Y is a path, we have

e(X ∪ Y ) = 2ℓ− e(X ∩ Y ) ≥ 2ℓ+ 1 − v(X ∩ Y ).
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Moreover v(X ∪ Y ) = 2ℓ− v(X ∩ Y ), so

e(X ∪ Y ) − ℓ− 1/(ℓ− 1)

v(X ∪ Y ) − ℓ
≥ ℓ+ 1 − v(X ∩ Y ) − 1/(ℓ− 1)

ℓ− v(X ∩ Y )
= 1 +

1 − 1/(ℓ− 1)

ℓ− v(X ∩ Y )
,

which is at least 1 + 1−1/(ℓ−1)
ℓ−3 . This is strictly larger than m̂(Cℓ) = 1 + 1−1/ℓ

ℓ−2 if

(ℓ− 2)(1 − 1/(ℓ− 1)) > (ℓ− 3)(1 − 1/ℓ).

This can be rewriten as (ℓ− 2)(ℓ− 1) > 1, which hold for every ℓ ≥ 3.

Let Y1, Y2 be different copies of Cℓ which share at least one edge with X. By the above argument,

each shares exactly one edge with X. We will again show that X∪Y1∪Y2 satisfies (3) and hence cannot

be a subgraph of a very good collage. Let v1 = v(Y1 ∩X), v2 = v(Y2 ∩ (X ∪ Y1)), and note that both

v1, v2 ≥ 2. Then, using that Y1 ∩X, Y2 ∩ (Y1 ∪X) are linear forests on v1 and v2 vertices respectively,

we have e(X ∪ Y1 ∪ Y2) ≥ 3ℓ+ 2 − v1 − v2. Then

e(X ∪ Y1 ∪ Y2) − ℓ− 1/(ℓ− 1)

v(X ∪ Y1 ∪ Y2) − ℓ
≥ 1 +

2 − 1/(ℓ− 1)

2ℓ− v1 − v2
≥ 1 +

2 − 1/(ℓ− 1)

2ℓ− 4
.

This is stricly greater than m̂(Cℓ) if (2 − 1/(ℓ − 1))(ℓ − 2) > (2ℓ − 4)(1 − 1/ℓ), which holds for every

ℓ ≥ 3. □

In the remainder of this section we work towards proving Lemma 6.10. We will need two preparatory

lemmas.

Lemma 6.11. Suppose G is obtained from a G′ ∈ GCℓ
, which has at most ℓ− 2 copies of Cℓ, by adding

one more copy of Cℓ to G
′ so that the intersection of G′ and this copy of Cℓ contains an edge. Then G

is not a subgraph of any very good collage.

Proof. Let F0 and F−1 be the central and attached copies of Pℓ of G′. Suppose G′ has k ≤ ℓ− 2 copies

of Cℓ, F1, . . . , Fk, enumerated in the linear order in Definition 3.5. For i ≥ 1 set F ′
i = Fi∩

⋃
0≤j<i Fi and

let F ′
−1 = F−1 ∩

⋃k
i=1 Fi. For i ∈ [k] ∪ {−1} let vi = v(F ′

i ), ei = e(F ′
i ). By Proposition 3.7, ei ≤ vi − 1.

Let H be the additional copy of Cℓ that we attach to G′ and let ek+1 = e(H ∩G′), vk+1 = v(H ∩G′),

so vk+1 ≥ 2 and ek+1 ≤ vk+1 − 1, since H ∩G′ contains an edge and is a linear forest. Then

eG ≥ ℓ− 1 +
k+1∑
i=1

(ℓ− vi + 1) + (ℓ− 1 − e−1) = (k + 3)ℓ− 1 + k −
k+1∑
i=1

vi − e−1

and

vG ≥ ℓ+

k+1∑
i=1

(ℓ− vi) + (ℓ− v−1) = (k + 3)ℓ−
k+1∑
i=1

vi − v−1.
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First suppose that F ′
−1 ̸= F−1. Then by Proposition 3.7 e−1 ≤ v−1 − 2 and

∑k
i=1 vi ≥ ℓ + k − 1, so∑k+1

i=1 vi ≥ ℓ+ k + 1, and we have

eG − ℓ− 1/(ℓ− 1)

vG − ℓ
≥

(k + 2)ℓ+ k + 1 −
∑k+1

i=1 vi − v−1 − 1/(ℓ− 1)

(k + 2)ℓ−
∑k+1

i=1 vi − v−1

≥ (k + 1)ℓ− v−1 − 1/(ℓ− 1)

(k + 1)ℓ− k − 1 − v−1

≥ (k + 1)ℓ− 2 − 1/(ℓ− 1)

(k + 1)ℓ− k − 3

= 1 +
k + 1 − 1/(ℓ− 1)

(k + 1)(ℓ− 1) − 2

= 1 +
(k + 1)(ℓ− 1) − 1

(k + 1)(ℓ− 1)2 − 2(ℓ− 1)
,

where we used
∑k+1

i=1 vi ≥ ℓ + k + 1 and Observation 3.1 for the second inequality; and v−1 ≥ 2 and

Observation 3.1 for the third inequality. Hence (3) is equivalent to

(k + 1)(ℓ− 1) − 1

(k + 1)(ℓ− 1)2 − 2(ℓ− 1)
>

ℓ− 1

ℓ(ℓ− 2)
.

After rearranging this can be rewritten as

(ℓ− 1)2 + 1 > (k + 1)(ℓ− 1)

which holds since k ≤ ℓ− 2.

Now suppose that F ′
−1 = F−1, so e−1 = ℓ− 1 and v−1 = ℓ. By Proposition 3.7,

∑k
i=1 vi ≥ ℓ+ k, so∑k+1

i=1 vi ≥ ℓ+ k + 2, and we have

eG − ℓ− 1/(ℓ− 1)

vG − ℓ
=

(k + 1)ℓ+ k −
∑k+1

i=1 vi − 1/(ℓ− 1)

(k + 1)ℓ−
∑k+1

i=1 vi

≥ kℓ− 2 − 1/(ℓ− 1)

kℓ− k − 2

= 1 +
k − 1/(ℓ− 1)

k(ℓ− 1) − 2

= 1 +
k(ℓ− 1) − 1

k(ℓ− 1)2 − 2(ℓ− 1)
,

and (3) is equivalent to
k(ℓ− 1) − 1

k(ℓ− 1)2 − 2(ℓ− 1)
>

ℓ− 1

ℓ(ℓ− 2)
.

After rearranging this can be rewritten as (ℓ− 1)2 + 1 > k(ℓ− 1) which holds for k ≤ ℓ− 2. □

Lemma 6.12. Let G ∈ GCℓ
be a subgraph of a very good collage with k ∈ [2, ℓ − 1] attached Cℓ’s. Let

F0, F−1 be the central and attached Pℓ of G and let F1, . . . , Fk enumerate the attached Cℓ’s in the linear

order of Definition 3.5. Then either

• for every i ∈ [k], Fi ∩
⋃

0≤j<i Fj is a path contained in F0, and Fi ∩
⋃

0<j<i Fj consists of the

ends of this path and has no edges;

• or G ∼= 2Cℓ.

Proof. If G fails to satisfy the first bullet-point of the lemma, then it satisfies one of the following

conditions:
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a) for some i ∈ [k], Fi shares at least one vertex in V (Fi) \ V (F0) with Fi ∩
⋃

0<j<i Fj ;

b) for some i ∈ [k], Fi ∩ F0 ∩
⋃

0<j<i Fj contains an edge.

c) for some i ∈ [k], Fi ∩ F0 has at least two connected components;

d) F−1 shares a vertex with
⋃k

i=1 Fi which is not in F0 ∩ F−1.

We will show that if G satisfies any of the above, then it satisfies (3) and hence cannot be a subgraph

of a very good collage. For i ≥ 1 let F ′
i = Fi ∩

⋃
0≤j<i Fj and vi = v(F ′

i ), ei = e(F ′
i ). Let F ′

−1 =

F−1 ∩
⋃k

i=1 Fi and v−1 = v(F ′
−1), e−1 = e(F ′

−1). From Proposition 3.7 we have v−1 ≥ 2. Moreover,

following the proof of Proposition 3.7, let

v1i = v

(
F ′
i ∩ F0

)
\

⋃
0<j<i

Fj

 ,

v2i = v

F ′
i ∩

⋃
0<j<i

Fj

 \ F0

 ,

v3i = v

F ′
i ∩

 ⋃
0<j<i

Fj

 ∩ F0

 ,

so that vi = v1i + v2i + v3i . From the proof of Proposition 3.7, we have that
∑k

i=1 v
1
i = ℓ and v3i ≥ 1 for

every i ∈ [2, k].

Claim 6.13. If G satisfies one of a), b), c), then
∑k

i=1 vi ≥ k + ℓ.

Proof. If G satisfies a), then
∑k

i=1 v
2
i ≥ 1 and the Claim follows, using

∑k
i=1 v

1
i = ℓ and v3i ≥ 1, for

every i ∈ [2, k]. If G satisfies b) for some i ∈ [k], then v3i ≥ 2 and hence
∑k

i=1 v
3
i ≥ k, which implies

the Claim using
∑k

i=1 v
1
i ≥ ℓ.

Suppose G satisfies c) i.e. suppose for some i ∈ [k], Fi ∩ F0 has at least two connected components.

Recall the order on the vertices of F0 given at the end of Definition 3.5, i.e. we consider V (F0) in the

order that we traverse the path from edge e1 to eℓ−1, with the end of F0 in e1 being the first vertex and

the end of F0 in eℓ−1 being the last vertex. Note we have v3j ≥ 1 for each j ≥ 2 because Fj shares the

first vertex on the first edge of Fj ∩F0 with
⋃

0<j′<j Fj′ . Let v be the first vertex of the last component

of Fi ∩ F0, let uv the edge of F0 not in Fi, and suppose Fj contains the edge uv. If j < i then v3i ≥ 2,

since then Fi shares v, which is not the first vertex of its first edge in F0; and if j > i, then Fj shares

the second vertex of one of its edges, so v3j ≥ 2. In either case, we deduce
∑k

i=1 v
3
i ≥ k which implies

the Claim using
∑ℓ

i=1 v
1
i = ℓ and v−1 ≥ 2. □

If G satisfies d), then v−1 ≥ 3 and using
∑k

i=1 vi ≥ k + ℓ − 1 from Proposition 3.7 we have v−1 +∑k
i=1 vi ≥ k+ ℓ+ 2. Using Claim 6.13 and the lower bound v−1 ≥ 2 we have v−1 +

∑k
i=1 vi ≥ k+ ℓ+ 2

if G satisfies one of a), b), c).

First suppose that F−1 is not a subgraph of
⋃k

i=1 Fi, and that it satisfies one of a), b), c), d). We will

show that it then satisfies the first bullet point of the lemma. Because F ′
−1 ̸= F−1 and it contains both

ends of F−1, it has two connected components. Substituting the bounds for vG, eG from Proposition 3.7,
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using e−1 ≤ v−1 − 2 and the bound v−1 +
∑k

i=1 vi ≥ k + ℓ+ 2 we have

eG − ℓ− 1/(ℓ− 1)

vG − ℓ
≥

(k + 1)ℓ− 2 + k −
∑k

i=1 vi − v−1 + 2 − 1/(ℓ− 1)

(k + 1)ℓ−
∑k

i=1 vi − v−1

≥ kℓ− 2 − 1/(ℓ− 1)

kℓ− k − 2

= 1 +
k − 1/(ℓ− 1)

k(ℓ− 1) − 2

= 1 +
k(ℓ− 1) − 1

k(ℓ− 1)2 − 2(ℓ− 1)
,

where we used for the second inequality Observation 3.1 and v−1 +
∑k

i=1 vi ≥ k + ℓ + 2. Hence (3) is

equivalent to
k(ℓ− 1) − 1

k(ℓ− 1)2 − 2(ℓ− 1)
>

ℓ− 1

ℓ(ℓ− 2)
.

This can be rewritten as (ℓ− 1)2 + 1 > k(ℓ − 1) which holds for k ≤ ℓ − 1. Hence if F ′
−1 is not a

subgraph of F−1, then G does not satisfy any of a), b), c), d) and hence G satisfies the first bullet-point

of the lemma.

Suppose now that F−1 ⊆
⋃

j≥1 Fj . We will show that in this case G ∼= 2Cℓ. Substituting e−1 = ℓ−1,

v−1 = ℓ in the expression for eG, vG in Proposition 3.7, we have eG ≥ (k + 1)ℓ − 1 + k −
∑k

i=1 vi and

vG = (k + 1)ℓ−
∑k

i=1 vi.

Claim 6.14. If
∑k

i=1 vi ≥ k + ℓ+ 1, then G is not a subgraph of a very good collage.

Proof. We have

eG − ℓ− 1/(ℓ− 1)

vG − ℓ
=
kℓ− 1 + k −

∑k
i=1 vi − 1/(ℓ− 1)

kℓ−
∑k

i=1 vi

≥ (k − 1)ℓ− 2 − 1/(ℓ− 1)

(k − 1)ℓ− 1 − k

= 1 +
(k − 1)(ℓ− 1) − 1

(k − 1)(ℓ− 1)2 − 2(ℓ− 1)
,

and (3) is equivalent to

(k − 1)(ℓ− 1) − 1

(k − 1)(ℓ− 1)2 − 2(ℓ− 1)
>

ℓ− 1

ℓ(ℓ− 2)
.

This can be rewritten as (ℓ− 1)2 + 1 > (k − 1)(ℓ− 1), which holds since k ≤ ℓ− 1. □

Since the ends of F−1 are not connected by an edge, F−1 cannot be a subgraph of a single Cℓ. Hence

there are edges uv, vw ∈ E(F−1) and Fi, Fi∗ , i < i∗, with uv ∈ E(Fi), vw ∈ E(Fi∗). In particular, v is

an internal vertex of F−1 i.e. v ∈ V (F−1) \ V (F0).

Claim 6.15. For every i ∈ [k] \ {i∗}, Fi ∩
⋃

0≤j<i Fj is a path contained in F0, and Fi ∩
⋃

0<j<i Fj

consists of the ends of this path and has no edges. Fi∗∩
⋃

0≤j<i∗ Fj consists of a vertex in V (F−1)\V (F0)

and a path in F0; and Fi∗ ∩
⋃

0<j<i∗ Fj consists of the ends of this path and a vertex in V (F−1)\V (F0),

and has no edges.

Proof. By Claim 6.14 it suffices to show that if G fails to satisfy the conditions of the Claim then∑k
i=1 vi ≥ k + ℓ+ 1.
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By the discussion before the Claim, we have v2i∗ ≥ 1. If F ∗
i shares two vertices in V (F−1) \ V (F0) or

one vertex outside V (F−1) ∪ V (F0) with
⋃

j<i∗ Fj then v2i∗ ≥ 2 and hence
∑k

i=1 vi ≥ k + ℓ + 1, using∑k
i=1 v

1
i = ℓ and that v3i ≥ 1 for all i ∈ [2, k]. If G fails to satisfy any other conditions of the claim,

arguing as in Claim 6.13, we either have v2i ≥ 1 for some i ̸= i∗ or v3i ≥ 2 for some i ∈ [k]; along with

v2i∗ ≥ 1, both imply
∑k

i=1 vi ≥ k + ℓ+ 1. □

Recall that F1, Fk contain the ends of F−1, since e1 ∈ E(F1) and ek ∈ E(Fk). We claim that

F−1 ⊆ F1 ∪ Fk. Suppose otherwise, and let Q1 ⊆ F1 ∩ F−1, Qk ⊆ Fk ∩ F−1 be the maximal subpaths

of F−1 containing the end of F−1 in e1 and the end of F−1 in eℓ−1 respectively. If there is an edge of

F−1 not in Q1 ∪Qk, then Q1, Qk are vertex disjoint, and for some 1 < i, j < k (with potentially i = j)

Fi shares a vertex with Q1 and Fj shares a vertex with Qk. Suppose z ∈ {0, 1, 2} of these vertices

are the ends of F−1. Recall that for each i ≥ 2, Fi shares the first vertex on the first edge of F0 ∩ Fi

with
⋃

0<j<i Fj , and note that this vertex cannot be an end of F−1: one end of F−1 is the last vertex

in the ordering, and the other end is in e1 which is not in any Fi, i ≥ 2 since the attached Cℓ’s are

edge-disjoint, by Claim 6.15. Thus
∑k

i=1 v
3
i ≥ k − 1 + z. We also have

∑k
i=1 v

2
i ≥ 2 − z, since Fi and

Fj together have 2 − z internal vertices of F−1, which are not in V (F0). Hence
∑k

i=1 vi ≥ k + ℓ + 1,

which contradicts G being a subgraph of a very good collage by Claim 6.14.

Claim 6.16. If k ≥ 3, then G is not a subgraph of a very good collage.

Proof. Suppose k ≥ 3. We will show that G satisfies (3), and hence cannot be a subgraph of a

very good collage. By Claim 6.15 the attached Cℓ’s are edge-disjoint and contain F−1, so eG = kℓ.

By Claim 6.15, for every i ∈ [2, k − 1], Fi shares exactly two vertices with
⋃

j≥1:j ̸=i Fj and these

vertices are the first and last vertex of V (F0) ∩ V (Fi); and F1, Fk share exactly one vertex, which is

contained in V (F−1). Hence, by counting first the vertices in F1∪Fk and then in F2, . . . , Fk−1, we have

vG = 2ℓ− 1 + (k − 3)(ℓ− 1) + (ℓ− 2) = kℓ− k. Then

eG − ℓ− 1/(ℓ− 1)

vG − ℓ
=

(k − 1)ℓ− 1/(ℓ− 1)

(k − 1)ℓ− k

= 1 +
k − 1/(ℓ− 1)

(k − 1)(ℓ− 1) − 1

= 1 +
k(ℓ− 1) − 1

(k − 1)(ℓ− 1)2 − (ℓ− 1)
.

and (3) is equivalent to

k(ℓ− 1) − 1

(k − 1)(ℓ− 1)2 − (ℓ− 1)
>

ℓ− 1

ℓ(ℓ− 2)
.

This can be rewritten as k(ℓ− 1) < (ℓ− 1)2 + 1, which holds, since k ≤ ℓ− 1. □

Hence we conclude that the edges of both F0 and F−1 are contained in exactly two Cℓ’s, F1, F2,

which share exactly one vertex in F0, by Claim 6.15, and exactly one vertex in F−1, by the discussion

preceding Claim 6.15. Hence F1 ∪ F2 spans 2ℓ− 2 vertices i.e. V (F1) ∪ V (F2) = V (F−1) ∪ V (F0). Let

v1, v2 be the vertices in V (F1) ∩ V (F2). It remains to show that v1, v2 span an edge in both F1, F2.

Suppose otherwise. Then, since the longest path in Cℓ between non-adjacent vertices is ℓ − 2, the

longest cycle in F1∪F2 has length at most ℓ−2+ℓ−1 = 2ℓ−3, which contradicts that F1∪F2 contains

a copy of C2ℓ−2. □

Proof of Corollary 6.8. This is a direct consequence of Lemma 6.12. □
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Proof of Corollary 6.9. We will in fact prove the lemma for any ℓ ≥ 4 i.e. we will show the following. If

H ∼= Cℓ, G ∈ GC4 are subgraphs of a very good collage so that H ∩G contains an edge, then G ∼= GCℓ
,

and G ∩H is exactly one edge.

The fact that G ∼= GCℓ
is a direct consequence of Lemma 6.11, which says that in a very good collage

no G ∈ GCℓ
with at most ℓ − 1 attached Cℓ’s can share an edge with a Cℓ which is not one of the

attached ones; and Lemma 6.12, which says that the only G ∈ GCℓ
with ℓ attached Cℓ’s contained in

very good collages is GCℓ
.

To show that G ∩H is exactly one edge, we will show that otherwise G ∪H satisfies (3) and hence

it cannot be a subgraph of a very good collage. Let e = e(G ∩H) ≥ 1 and v = v(G ∩H) and suppose

that v ≥ 3. Then e(G ∪H) = ℓ2 − 1 + ℓ− e(G ∩H) ≥ ℓ2 + ℓ− v and v(G ∪H) = ℓ2 − ℓ− v. Then

e(G ∪H) − ℓ− 1/(ℓ− 1)

v(G ∪H) − ℓ
≥ ℓ2 − v − 1/(ℓ− 1)

ℓ2 − ℓ− v
≥ ℓ2 − 1/(ℓ− 1) − 3

ℓ2 − ℓ− 3
,

using Observation 3.1 for the last inequality and v ≥ 3. After some calculations, we see this is strictly

greater than m̂(Cℓ) = ℓ2−ℓ−1
ℓ2−2ℓ

if and only if ℓ2 − 3ℓ + 3 > 0 which holds for ℓ ≥ 4. Hence G ∪ H

satisfies (3), as required. □

Finally we are ready to prove Lemma 6.10.

Proof of Lemma 6.10. Let G be a copy in C of some graph in GCℓ
which contains Y . Let X1, X2 be

the copies of Cℓ in X. If G ∼= 2Cℓ, since X is a block and blocks are edge-disjoint, we have G = X.

But then Y is a subgraph of X which is a contradiction. Thus G is not isomorphic to 2Cℓ and the first

setting of Lemma 6.12 applies. Hence G cannot have two attached Cℓ’s that share an edge, so either

one or none of X1, X2 is an attached Cℓ of G. In either case, if G has at most ℓ− 2 attached Cℓ’s, then

G∪X satisfies the assumption of Lemma 6.11 and thus cannot be contained in a very good collage. We

deduce that G has ℓ−1 attached Cℓ’s. The only such member of GCℓ
which also satisfies the properties

in Lemma 6.12 is GCℓ
. This proves the first bullet-point of the Lemma.

Suppose that there are two copies of Cℓ, Z1, Z2 which are not among the attached Cℓ’s in G, such

that i) Z1 shares an edge with G and ii) Z2 shares an edge with G ∪ Z1 (these may be equal to or

different from X1, X2) Let e1 = e(Z1∩G), v1 = v(Z1∩G), e2 = e(Z2∩ (G∪Z1)) and v2(Z2∩ (G∪Z1)).

Note that ei ≤ vi − 1 and e(G) = ℓ2 − 1 and v(G) = ℓ2 − ℓ. We have

e(Z ∪G) = ℓ2 − 1 + ℓ− e1 + ℓ− e2 ≥ ℓ2 + 2ℓ+ 1 − v1 − v2

and

v(Z ∪G) = ℓ2 − ℓ+ ℓ− v1 + ℓ− v2 = ℓ2 + ℓ− v1 − v2.

Then the left-hand-side of (3) with H(3) = G ∪ Z1 ∪ Z2 is at least

ℓ2 + ℓ+ 1 − v1 − v2 − 1/(ℓ− 1)

ℓ2 − v1 − v2
≥ ℓ2 + ℓ− 3 − 1/(ℓ− 1)

ℓ2 − 4
,

using that vi ≥ 2 and Observation 3.1. Then (3) reduces to

ℓ2 + ℓ− 3 − 1/(ℓ− 1) > (ℓ+ 2)(ℓ− 1 − 1/ℓ)

which after rearranging is equivalent to ℓ > 2. Hence there are no such copies of Z1, Z2. This implies

that X1 (say) is one of the attached Cℓ’s in G and that there is no other Cℓ sharing an edge with G∪X
(since the argument above shows at most one Cℓ, X2 in this case, which is not an attached Cℓ can share

an edge with G). This proves the third bullet-point of the Lemma.

Finally, to prove the second bullet-point of the lemma, we show that X2 shares no vertex with G

other than those in X1 ∩X2. Let e = e(X2 ∩G) and v = v(X2 ∩G) and suppose for contradiction that
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z1 zℓ

z2 zℓ − 1

Figure 10. in ?? we will show that any colouring of G1 contains many copies of the

graph consisting of a blue path of length ℓ(ℓ− 1) whose ends are connected by a red edge,

illustrated here for ℓ = 4.

v ≥ 3. We have e(G ∪X2) = ℓ2 − 1 + ℓ− e ≥ ℓ2 + ℓ− v and v(G ∪X2) = ℓ2 − ℓ+ ℓ− v = ℓ2 − v Then

the left hand side of (3) is at least

ℓ2 − v − 1/(ℓ− 1)

ℓ2 − ℓ− v
≥ 1 +

ℓ− 1/(ℓ− 1)

ℓ2 − ℓ− 3

and (3) reduces to (ℓ− 2)(ℓ− 1/(ℓ− 1)) > (1 − 1/ℓ)(ℓ2 − ℓ− 3), which holds for all ℓ ≥ 3. □

7. The 1-statement in the lower range

A dangerous Cℓ2−2ℓ+2 in a red-blue coloured graph consists of a red edge and a blue Pℓ2−2ℓ+1. We

say a sequence of vertices (z1, z2, . . . , zℓ) hosts a dangerous Cℓ2−2ℓ+2 which is rooted at z1zℓ if z1zℓ is

coloured red and for each i ∈ [ℓ − 1] there is a blue Pℓ−1, Hi, with ends zi and zi+1, so that for any

pair i < j, Hi ∩ Hj is empty unless j = i + 1 in which case Hi ∩ Hj is vi+1. Observe that if the

first random graph has a sequence (z1, z2, . . . , zℓ) hosting a dangerous Cℓ2−2ℓ+2 and the second random

graph contains the edges zizi+1, for every i ∈ [ℓ − 1], then any colouring of the second random graph

has a monochromatic Cℓ.

The next lemma shows that if G1 has a colouring with many distinct sequences (z1, . . . , zℓ) which

host a dangerous Cℓ2−2ℓ+2, then with high probability G2 has a monochromatic Cℓ.

Lemma 7.1. With high probability, any colouring of G1 that contains at least Ω
(
nℓ

2−ℓpℓ
2−ℓ+1

)
dan-

gerous Cℓ2−2ℓ+2’s cannot be extended to a colouring of G1 ∪G2 avoiding monochromatic Cℓ’s.

Proof.

Claim 7.2. Only o
(
nℓ

2−ℓpℓ
2−ℓ+1

)
dangerous Cℓ2−2ℓ+2 share the sequence on which they are hosted

with another.

Proof. Consider the pairs G1, G2 of Cℓ2−2ℓ+2’s that are hosted on the same sequence; we can forget

about the colours. Let H1, . . . ,Hℓ−1 be the blue Pℓ−1’s in G2 and let ei = e(Hi ∩G1), vi = v(Hi ∩G1)

and observe vi ≥ 2, since G1, G2 are hosted on the same sequence. Then the expected number of pairs
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(G1, G2) is, up to a constant factor,∑
(v1,...,vℓ),(e1,...,eℓ)

nℓ
2−2ℓ+2 pℓ

2−2ℓ+2 n
∑ℓ−1

i=1 (ℓ−vi) p
∑ℓ−1

i=1 (ℓ−vi),

where the sum is over the O(1) valid options for vi, ei. Observe that the expected number of the

pairs G1, G2 which do not have the same root is this estimate multiplied by p. It suffices to show

n
∑ℓ−1

i=1 (ℓ−vi) p
∑ℓ−1

i=1 (ℓ−vi) ≪ nℓ−2pℓ−1. In fact we can show that each of the ℓ− 1 terms of the product on

the left hand side is at most nℓ−2pℓ−1, which is o(1), and hence the inequality holds. □

Now apply second moment method on the distinct sequences as in second part of Proposition 4.2 of

Alon–Morris–Samotij [1]. □

The next two lemmas imply there are nℓ
2−ℓpℓ

2−ℓ+1 distinct sequences hosting a dangerous Cℓ2−2ℓ+2.

Lemma 7.3. Let n−1+1/ℓ ≪ p ≪ n−1+1/(ℓ−1). With high probability, and colouring of G1 ∼ G(n, p)

contains Ω
(
nℓ

2−ℓpℓ
2−ℓ+1

)
dangerous Cℓ2−2ℓ+2.

Proof. Use lemma 4.8 of Alon–Morris–Samotij [1] to pass to a subgraph of G1 with an upper bound on

the red degree. Even though this lemma as stated requires an upper bound on the number of red edges

(e(S) as stated in [1]) inspecting the proof shows this is not necessary: there is simply a dependence

between c and β.

In this graph of small max red degree, a second moment argument similar to the proof of Proposition

4.7 of [1] proves the lemma. □

Lemma 7.4.

8. Balanced colourings

9. Unbalanced colourings

10. Concluding remarks

This is also the point in the proof of Theorem 1.2 where the assumption p = ω
(
n−3/5

)
seems to be

critical. It is plausible that the complex argument devised in Theorem 1.2 for proving the upper bound

on q̂K3 (p, n) can be generalised for all cycles when p = ω(n−1/m2(Cℓ), new ideas seem to be needed

when p = Ω(n−1/m2(Cℓ), for all ℓ ≥ 3.
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13. P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K4, Graphs and Combinatorics 2 (1986), no. 1,

135–144.

14. A. Freschi, R. Hancock, and A. Treglown, Typical Ramsey properties of the primes, abelian groups and other discrete

structures, arXiv:2405.19113 (2024).
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